Delta 300 / 1000 | (1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10) | Liquid crystal display ON / OFF pushbutton Pushbutton for data hold and MIN/MAX storage functions Pushbutton for manual range selection Multi-function pushbutton Function selector switch Terminal sockets Symbol for "CONTINUOUSLY ON" Display for digits, decimal point and polarity. Display for manual range selection, DATA HOLD and MIN/MAX storage | (11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22) | Display for selected function Display for the unit of measur quantity Overrange indication for posit analog range. Pointer for analog indication Scale for analog indication Over range indication for negative analog range Low battery indication Buzzer indication Didplay for °C for temperature measurement range. Rotary mechanism for clamp jaws. Safe trigger mechanism. Limit of safe access for hand held. | ive | | |---|--|--|--|-----|--| | Con | tents | | | | | | 1 | Introduction | | | 2 | | | 2. | Safety features and safety precaution | ns | | 2 | | | 3. | Switching the Clamp Meter ON | | | 3 | | | 4. | Function and range selection | | | 4 | | | 4.1 | Autoranging | | | | | | 4.2 | Manual range selection | | | | | | 5. | Liquid crystal display | | | | | | 5.1 | Digital Display | | | | | | 5.2 | Analog indication | | | | | | 5.3 | Backlit | | | | | | 6. | "DATA" hold facility | | | | | | 7. | Minimum value and maximum value ' | "MIN/N | IAX" storage | | | | | facility | | | 6 | | | 8. | Voltage measurement | | | 9 | | | 8.1 | Voltage measurement on electrical sy | /stems | up to 1000 V | | | | | with the HV 30 measuring adapter | | | 9 | | | 9. | Resistance measurement | | | 11 | | | 10. | Diode test and continuity test | | | | | | 11. | Temperature measurement | | | | | | 12. | Capacitance Measurement 1 | | | | | | 13. | Frequency Measurement | | | 13 | | | 14. | Duty cycle Measurement | | | | | | 15. | Current Measurement | | | | | | 15.1 | DC Current Measurement | | | | | | 16. | Empty Positions | | | | | | 17. | Specifications | | | | | | 18. | Maintenance | | | | | | 18.1 | Battery | | | 21 | | 18.2 19. ## 1. Introduction: Thank you very much for selecting Delta 300/1000. We are leading manufacturer of Electrical and Electronics state-of-art measuring instruments. These Delta 300/1000 are manufactured as per IS 13875 and DIN 43751. ## 2. Safety features and safety precautions You have chosen a Clamp Meter which provides you a very high degree of safety. The digital Clamp Meter / Digital multimeter manufactured and tested in compliance with the safety standard IEC 61010-1:2010. In case of incorrect use or careless handing, the safety of both user and clamp meter is not assured. For proper use and safe handling, it is absolutely necessary to read and understand the operating instructions before using the Delta 300/1000. Please note the following safety precautions: - Operators must use individual protective equipment if hazardous live parts of installation could be accessible. - Keep hands/fingers behind the edge that separates rotating jaws with hand held part(22). This is the limits of the hand held part during measurement. - The Delta 300/1000 must be operated only by persons who understand the danger of shock hazards and are aware of the necessary safety precautions. Shock hazards exist wherever voltages of more than 30V(TRMS) are present. - Do not work alone in shock hazardous environment while carrying out measurement. - The maximum permissible voltage between any of the terminal sockets(7) and ground is1000V. - Take into account that unexpected voltages can occur on device under test (e.g. defective instrument). For example, capacitors may be charged to a dangerously high voltage. - Verify that the test leads are in good condition, e.g. no cracked insulation, no open circuit sin the leads or connectors. - This Delta 300/1000 must not be used for measurements on circuits with corona discharge (high voltage). - Be particularly careful when measuring on HF circuits. Dangerous composite voltages may exist there. - Measurements under moist environmental conditions are not permitted. - Do not overload the measuring ranges beyond their allowable capacities. Limit values are given in specifications. Ref. Chapter 17. - For safe voltage measurements in power systems upto 1000V we, recommend the HV 30 measuring adapter, which is available as an accessory. Its internal resistance limits the measuring current in the case of overvoltage, in correct operation and safely suppresses sparking from spark gap. Also refer to Section "8.1 Voltage measurement on electrical systems upto 1000V with HV 30 measuring adapter". - Please verify the performance of Delta 300/1000 after repairing of the meter, before using it for actual measurement. - Do not use the Delta 300/1000 if obvious wear in jaw opening is visible. - Protection provided by the digital Delta 300/1000 may be impaired if the Delta 300/1000 is not used in a manner specified in this user manual. #### Meaning of categories and their significance per IEC61010-1 **CAT I:** Measurements in electrical circuits which are not directly connected to the mains: for example electrical systems in motor vehicles and aircraft, batteries etc.circuits **CAT II:** Measurements in electrical which are electrically connected to the low voltage mains; with plugs, e.g. at home, in the office or laboratory etc. CAT III: Measurements in building installations, stationary power consumers, distributor terminals, devices connected permanently to the distributor **CAT IV:** Measurements at power sources for low-voltage installations, meters, mains terminals, primary over voltage protection devices. ### Meaning of the symbols on the device | \triangle | Warning of a danger point (Attention, refer to the user manual) | |--------------|---| | <u></u> | Earth (ground) terminal. | | | Double or reinforced insulation | | CAT III / IV | Instrument for over voltage category III or IV | | | | ### Meaning of the acoustic signals - 1) Intermittent acoustic signal: Voltage limit exceeded; for Voltage >1000V - 2) Intermittent acoustic signal: Current limit exceeded; for Current > 1100A ## Repair, replacement of parts: When opening the meter, live parts may be exposed. Therefore, the meter must be disconnected from the measuring circuit prior to opening its case for repair or replacement of parts. If repair cannot be avoided unless the meter is opened and live, this work must only be performed by a qualified person who understands the danger involved. #### Faults and abnormal stress: When it is realised that the safe operation is no longer possible, take the meter out of service and secure it against accidental use. Safe operation may not be possible, - when the meter shows obvious signs of damage, - when the meter no longer functions correctly, - after prolonged storage under adverse conditions, - due to severe stress during transportation. # 3. Switching the Delta 300/1000 "ON" ## Battery We have already fitted your meter with a 9V flat cell battery according to IEC 6 F22 or IEC 6LR61. It is ready for operation. Before you use the meter for the first time or after storage, refer to Section "18.1 Maintenance-Battery". ## Switching the meter "ON" Press the "ON/OFF" pushbutton (2). Switch-"ON" is acknowledged by a sound signal. As long as you keep the pushbutton pressed, all segments of the liquid crystal display (LCD) will appear. The LCD is shown before page 1. After the pushbutton is released, the meter is ready for operation. #### Note: Electric discharges and high-frequency influence may cause incorrect information to be displayed and block the measuring process. Reset the meter by switching it OFF and ON again otherwise, check the battery connections. Disconnect the meter from the measuring circuit before you open it, and see section "18.Maintenance"! #### Automatic TURN - OFF The meter turns off automatically, when the measured value remains constant (variations of the measured value $\leq \pm$ 2digits) for about 10 minutes and when neither a pushbutton nor the function selector switch is operated during that time. #### How to prevent automatic TURN-OFF In order to prevent automatic "TURN OFF" select "CONTINUOUSLY ON" mode. For this, press yellow multi-function pushbutton (5) and the "ON/OFF" pushbutton (2) together. The function "CONTINUOUSLY ON" is shown on the LCD (1) by the symbol (8). #### Turning the multimeter OFF Press the "ON/OFF" pushbutton (2). ## 4. Function and range selection #### 4.1 Autoranging The multimeters feature autoranging for all measuring ranges with the exception of the 30 mV ---, 300 mV ---, ranges. Autoranging is automatically selected after switching the Multimeter ON. According to the measured quantity applied, the multimeter automatically selects the measuring range which gives the best resolution. When switching to frequency measurement and to ratio measurement, the previously selected
voltage measuring range is maintained. The meter switches automatically to : The next higher range at \pm (3099 digits + 1digit) the next lower range at \pm (240/280 digits - 1 digit) ## 4.2 Manual range selection You can switch OFF auto-ranging and select the ranges manually according to the table on the following page. Manual mode is switched OFF when pushbutton AUTO/MAN is pressed (4) for approximately 1s, when the function selector switch (6) is operated, or when the meter is turned OFF and ON again. When switching back to auto-ranging from 30 mV --- or 300 mV --- ranges, 3 V--- range is automatically selected. | AUTO/ | Function | Acknowl-
edgement | | | |-------|---|----------------------|-----|--| | (4) | | | | | | Short | Manual mode on :
Used range is fixed | MAN
(10) | 1 x | | | | Switching sequence at: | | | | | | V =: $3V \rightarrow 30V \rightarrow 300V \rightarrow 1000V \rightarrow 30 \text{ mV} \rightarrow 300 \text{ mV} \rightarrow 3 \text{ V} \rightarrow$ | MAN | | | | Short | $V_{\sim}: 3V \rightarrow 30 \text{ V} \rightarrow 300 \text{ V} \rightarrow 1000 \text{ V} \rightarrow 3\text{ V} \rightarrow \dots$ | (10) | 1 x | | | | $\Omega \ : \ 30\text{M}\Omega \to 30\Omega \to 300\Omega \to 3 \ \text{k}\Omega \to 30 \ \text{k}\Omega \to 300 \text{k}\Omega \to 300 \text{k}\Omega \to 300 \times \Omega \to 3000 \ \text{m}$ | | | | | | F : 30 nF \rightarrow 300 nF \rightarrow 3 μ F \rightarrow 30 μ F \rightarrow 30 nF | | | | | | Hz: 300 Hz \rightarrow 3 KHz \rightarrow 30 KHz \rightarrow 100 KHz \rightarrow 300 Hz | | | | | | Delta 1000 A~, A: 300A →1000A →300A | | | | | | Delta 300 $A \sim A = 300 \rightarrow $ | | | | | Long | Return to autoranging | - | 2 x | | ## 5. Liquid crystal display ## 5.1 Digital display The digital display (9) shows the measured value with correct location of decimal point and sign. The selected measuring Unit (12) and the function (11) are simultaneously displayed. When measuring DC quantities, a minus sign appears in front of the digits, when the positive pole of the measured quantity is applied to the " \bot " input terminal. When upper range limit 3099 (on the range → :1999), is exceeded then "OL" is displayed. With V and Ω measurements, the digital display is updated two times per second. ## 5.2 Analog indication The analog indication with pointer presentation gives the dynamic response of a moving-coil movement and is updated 20 times per second, when measuring V and Ω . Analog indication is of particular advantage when observing variations of measured values and for calibration procedures. The analog indicator has its own polarity indication. When measuring DC quantities, the analog scale (15) has a negative range of 4 scale divisions so that variations of the measured values around "zero"can be observed exactly. When the measured value exceeds the range of indication, the left triangle (16) is shown before the polarity of the analog indicator switches over after approximately 0.7s. The over range indication on the measuring range (>3099 digits, on the range →>1999) is shown by the right triangle (13). ## 5.3. Backlit (Optional) The instrument is provided with user selectable Back-lit for taking measurements in poor lighting conditions/ dark areas. #### Switching the Backlit ON By pressing "AUTO/MAN" and "HOLD" keys simultaneously the Backlit can be switched ON. ## Switching the Backlit OFF By pressing "AUTO/MAN" and "HOLD" keys simultaneously the Backlit can be switched OFF. ## 6. "DATA" HOLD facility The HOLD function allows to automatically hold the measured values. The meter holds the measured value on the digital display with a sound signal and displays "HOLD" on LCD display (10). The probes or clamp can now be removed from the measuring point and the measured value on the digital display (9) can be read. The analog indication is not influenced by the data HOLD. The actual measured value can still be noted / read. Note that with a held digital display, the location of the decimal point is also held. With autoranging selected, the measuring range of the analog indicator is no longer known. Note: Hold function is not available in function → °C and 30 mV and 300 mV ranges in function V - - - To activate "HOLD" function momentarily, press the HOLD key. - The "HOLD" push button(3) is pressed for approx. 1s. This is acknowledged by 2 sound signals. - The function selector switch (6) is operated or - The multimeter is turned OFF and ON again. # Minimum value and Maximum value "MIN/MAX" storage
facility. With the MIN/MAX function, you can hold the minimum and the maximum measured value which was applied to the input of the multimeter after activating MIN/MAX function. The most important application is the determination of the minimum and the maximum value for long-term monitoring of measured quantities. MIN/MAX does not influence the analog indication The actual measured value can still be noted/read. Apply the measured quantity to the meter and select the measuring range prior to activating the MIN/MAX function. With the function activated, you can select the measuring ranges only manually, if you switch to another range, the stored MIN/MAX values are cleared. | F | | Meas- | Measured | Meteracknowledgement
Display | | | |---|------------------------|---|--|----------------------------------|----------------------------|-----------------| | Function
MIN/MAX | DATA
MIN/MAX
(3) | uring
ranges | Values
MINandMAX | Meas.
Value
digital | MIN
MAX | Sound
Signal | | 1. 30mV/
300mV/
300mV and °C
1xshort | | V ~
A~ A
Ω , F,%
°C ,Hz | Stored | actual
meas-
ured
value | MIN
and
MAX
flash | 1 x | | 2.
Storeand | ↓
short | V ~ A
A ~
Ω , F,% | StorageContinued inthebackground. | stored
MIN
value | MIN | 1 x | | display | display short C,H | °C,Hz | newMIN/MAX. | stored
MAX
value | MAX | 1 x | | 3.
Returnto1. | ↓
Short
↓ | Same
as1. | Sameas1.,
Stored Values
are notcleared | same
as1. | same
as1. | 1 x | | Reset | Long | | Cleared | Cleared | Cleared | 2 x | The MIN/MAX function is switched OFF, when the MIN/MAX pushbutton (3) is pressed for approximately 1s, or when the function selector switch (6) is operated, or when the meter is turned OFF and ON again. ## Voltage measurement Voltage measurement on electrical systems upto 1000V with the HV 30 measuring adapter ## 8. Voltage measurement - According to the voltage to be measured, set the function selector switch (6) to V ~, V --- - Connect the test leads as shown. The " \(\perp \)" socket should be connected to the lowest potential ground available. #### Notes: The 30 mV $\overline{--}$ and 300 mV $\overline{--}$ measuring ranges can only be selected manually with the "AUTO/MAN" pushbutton (4)! On the 1000 V range, an intermittent sound signal warns you, when the measured value exceeds the upper range limit. ## Zero adjustment on the 30 mV --- measuring range Connect the test leads to the meter and join the free ends. After having selected the measuring range, briefly press the yellow multifunction pushbutton (5). The meter acknowledges zero setting by a sound signal, the LCD shows "00.00" (+ 1 digit) and the decimal point flashes. The displayed voltage at the instant the pushbutton is pressed, is used as reference value (max \pm 200 digits) it is automatically deducted from the values measured thereafter. #### The zero adjustment is cleared when; - By pressing the yellow multifunction pushbutton (5) for a long time, clearance is acknowledged by the two sound signal. - By switching the instrument OFF. # 8.1 Voltage measurement on electrical systems up to 1000V with the HV30 measuring adapter. On low-Voltage systems, transient over voltages of several kilovolts can occur due to switching functions or lightning discharges. Direct connection of your multimeter to such systems for voltage measurement can be dangerous. For voltage measurements in power systems with nominal voltages upto 1000V, use the HV30 measuring adapter. It is an adapter for Delta 300/1000 which eliminates dangers caused by overvoltages and incorrect operation of the Delta 300/1000. It provides the following protective functions.. - Protection of the input circuit of voltage measuring range of multimeters. The internal resistance of the HV30 limits the current in the case of overvoltage. - Overload capacity: continuously 1200 Vrms Transient (rise 10 µ s/fall 1000 µ s) 6 kV max. - Safe suppression of sparking from spark plug after overvoltage. - Voltages above 1000V can be measured with a high-voltage probe, provided the necessary safety precautions are taken! ### Resistance measurement ## **Diode Test** **Continuity Test** ### 9. Resistance measurement - Verify that the device under test is electrically dead. External voltages would falsify the measured result! - Set the function selector switch (6) to "Ω". - Connect the device under test as shown. #### Zero adjustment on the 30Ω measuring range When measuring small resistance values on the $30~\Omega$ range, you can eliminate the resistance of the leads and contact resistance by zero adjustment. - Connect the test leads to the multimeter and join the free ends. - Briefly press the yellow multi-function pushbutton (5). The meter acknowledges zero adjustment by a sound signal, the LCD shows "00.00"(+1digit) and the decimal point flashes. The resistance measured at the instant the pushbutton is pressed is used as reference value (max.200 digits) It is automatically deducted from the values measured thereafter. #### Zero adjustment can be cleared. - By pressing the yellow multifunction pushbutton (5) for a long time and is acknowledges by two sound signals. - By switching the multimeter OFF. #### 10. Diode test and continuity test - Verify that the device under test is electrically dead. External voltages would falsify the measured results! - Set the function selector switch (6) to "→+" - Connect the device under test as shown. Forward direction and/or short circuit: The multimeter displays the forward voltage in Volts. As long as the voltage drop does not exceed the maximum display value of 1.999V, you can also test several series-connected elements or reference diodes with small reference voltage. Reverse direction or open circuit: The multimeter indicates overrange "OL" #### Note: Resistors and semiconductor junction in parallel with the diode falsify the measured results! ## Diode test and continuity test with buzzer With the "buzzer" function selected, the meter emits a continuous sound signal on the range 0...approx. 0.2 V. ## To switch the Buzzer ON: Briefly press the yellow multi-function pushbutton (5). The multimeter acknowledges turn-ON with a sound signal. At the same time, the symbol Φ (18) appears the LCD. #### To switch the Buzzer OFF - Briefly press the yellow multi-function pushbutton (5) again. - The multimeter acknowledges turn-OFF with a sound signal. The symbol (1)) (18) disappears on the LCD. When selecting the function "Diode test and Continuity test" with the function Selector switch (6), the buzzer is always switched OFF Repeated brief pressing of the multifunction pushbutton (5) alternately switches the buzzer on and off. When pressing the push button for a long time, the buzzer is always switched OFF, this is acknowledged by the buzzer sounding twice. ## 11. Temperature measurement The Delta 300/1000 meter allows you to measure temperature with Pt100 and Pt1000 temperature sensors in the range from -200 (- 100) $^{\circ}$ C...+850 $^{\circ}$ C - Set the function selector switch (6) to "Ω" - Connect the sensor to the two terminals. - Briefly press the yellow multifunction pushbutton (5). - ► The Delta 300/1000 switches to temperature measurement, it automatically detects the connected sensor (Pt100 to Pt1000) and shows the measured temperature in °C on the digital display. #### Notes: This measurement automatically considers the lead resistance of Temperature sensors which are available as accessory. It is not possible to switch over to temperature measurement when the 30Ω resistance range is selected. ## Sensor lead resistance up to 50Ω Lead resistance of sensors having a value differing from that of company sensors can be considered up to a value of 50Ω as follows: - Briefly press the yellow multi-function pushbutton (5) again. - The LCD now displays the resistance value which the Delta 300/1000, automatically considers after selecting the temperature measuring range. We can recognise that this is the resistance correction value on the temperature measuring range. The "C" character is simultaneously shown on the display. - You can set the lead resistance correction value as follows: - Press the DATA- HOLD pushbutton (3) to increment the value, or the AUTO/MAN pushbutton (4) to decrement the value. Each time the pushbutton is briefly pressed, the value changes by one digit. - Briefly press the yellow multi-function pushbutton (5) again. - The LCD displays the measured temperature. The flashing decimal point shows you that we have entered a correction value for the lead resistance. The correction value is retained as long as Delta 300/1000 is switched on. - Each time the yellow multi-function pushbutton (5) is briefly pressed, the display changes between measured temperature and correction value of the lead resistance. We can exit the temperature measurement function - by pressing the yellow multi-function switch (5) longer, this is confirmed by the two sound signals. - by changing the function selector switch. #### Note: For the lead resistance, the actual value measured on the Delta 300/1000 should be taken as correction value and not any specified value. #### 12. Capacitance measurement - Verify that the device under test is electrically dead. External voltages would falsify the measured results! - Set the function selector switch (6) to "F" - Connect the (discharged!) device under test to the " \(\pm\$ " and " F" sockets via test lead. #### Note: Connect polarised capacitors with the " $_$ " pole to the " \bot " socket. Resistors and semiconductor junctions in parallel with the capacitor falsify the measured results! #### Zero adjustment on the 30 nF measuring range When measuring small capacitance values on the 30 nF range, the
internal resistance of the multimeter and the capacitance of the leads can be eliminated by zero adjustment. - Connect the test leads to the meter without device under test. - Briefly press the yellow multi-function pushbutton (5). The meter acknowledges zero adjustment by a sound signal, by displaying "00.00"" (+1digit) on the LCD and by a flashing decimal point. The capacitance measured at the instant the pushbutton is pressed is used as reference value (max.200digits). It is automatically deducted from the values measured thereafter. #### The zero adjustment can be cleared - By pressing the yellow multi-function pushbutton (5) for a long time, clearance is acknowledged by the two sound signal. - By switching the multimeter off. ## 13. Frequency measurement Frequency measurement is possible on all voltage measuring ranges in AC and DC modes. - Set the function selector switch 6) to V ~, V -. - Connections are made the same way as for voltage measurement. - Briefly press the yellow multi-function pushbutton (5) The Delta 300/1000 switches to frequency measurement. The frequency is displayed on the LCD. - See section "17. Specifications" for the lowest measurable frequencies and the maximum permissible voltages. # Changing over between voltage, frequency and duty cycle measurement Repeated brief pressing of the yellow multi-function switch (5) changes the measuring functions in the following order: Voltage → frequency → duty cycle → voltage From frequency or duty cycle measurement, directly switching back to voltage measurement is possible. - By pressing the yellow multi-function pushbutton (5) for a long time. The meter acknowledges this by two sound signals. The voltage measuring range last selected is maintained. - By operating the function selector switch (6). ## 14. Duty cycle measurement With duty cycle measurement, we can determine the ratio of pulse duration to cycle time of recurring square-wave signals. - Set the function selector switch (6) to V~ or V- - Connections are made in the same way as for voltage measurement - Briefly press the yellow multi-function pushbutton (5) twice. The meter switches to duty cycle measurement. The duty cycle-that is the percentage pulse duration of a signal-is displayed on the LCD in% - That is: #### Notes: The applied frequency must remain constant during the duty cycle measurement. Change -over between voltage, frequency and duty cycle factor measurement is done as described in the preceding section. #### 15. Current Measurement Delta 300/1000 can measure current up to 1000A, in two ranges i.e. 300.0A and 1000 A. Where as Delta 300A can measure current up to 300A in two ranges i.e. 30.00A and 300.0A. One of the two ranges can be selected manually with AUTO/MAN key. To measure the current through a cable, push the trigger (21) to open the jaws and clamp the jaws around the cable as shown in **figure a and figure b**. ### 15.1 DC Current Measurement Set the function selector switch (6) to A--- #### Zero adjustment on A--- functionality - Zero adjustment is possible with lower range (30.00A range for Delta 300 and 300.0A range for Delta 1000). - Press yellow multifunction key shortly either in AUTO mode or lower range in Manual mode. - For higher range (300.0A range for Delta 300 and 1000 range for Delta 1000) same reference which is available for lower range is used. The meter acknowledges zero setting by a sound signal, the LCD shows "00.00 / 000.0"(+1digit). The displayed current at the instant the pushbutton is pressed, is used as reference value. It is automatically deducted from value measured thereafter. Maximum number of digits that can be nullified are 100. The Zero adjustment is cleared when; - By pressing the yellow multifunction pushbutton (5) - By switching the instrument OFF. ### 15.1 DC Current Measurement Set the function selector switch (6) to A --- and long press multifunction key (5). #### Changeover between A --- and A~ Repeated long pressing of the yellow multi-function switch (5) changes the measuring function in the following order: $A \xrightarrow{---} \rightarrow A \sim \rightarrow A \xrightarrow{---}$ Figure b ## Unique design for safety and comfort In conventional Delta 300/1000 display, keys and clamp jaws are in the same plane. When current measurement is to be done on vertical bus bars, over head cables, cables in congested places user connect the Delta 300/1000 but the keys and display may not be visible, hence not able to take the readings or operate the keys. To over come the above mentioned problem Delta 300/1000 has a unique feature called "Rotary mechanism for clamp jaws". In this, the clamp jaws are rotating. Hence it is possible to align the clamp jaws as the orientation of bus bar/conductor while keeping Display and keys facing the user, so that user can take the readings and operate the keys. Rotary clamp jaws can be rotated at different angles with the step of 30° maximum, up to 90° in both clock-wise as well as anti-clock wise direction as shown in **figure c** Normally, it is difficult to access the middle busbar for current measurement. With "Rotary mechanism for clamp jaws" it is easy to access middle bus bar, while keeping display and keys facing towards the user as shown in **figure d** on previous page. ### Safe trigger mechanism The conventional Delta 300/1000s have trigger mechanism either near to left jaw or right jaw. While taking measurements on bare bus bar or bare conductor the user's hand comes very close to bare bus bar/conductor, which increases the risk of electric shocks to the user. Also in conventional Delta 300/1000s trigger is operated with single finger, usually a thumb which causes fatigue to the user while opening or closing the clamp jaws. To over come the above mentioned problems, Delta 300/1000 has a unique feature called "Safe trigger mechanism" in which trigger is located at bottom side of the Delta 300/1000 and far away from the jaws and hence the bus bar. So user's hand is at safer distance from bare conductors, hence minimizes the risk of electric shock to the user. This is shown in **figure e.** Also trigger can be comfortably operated with more than one finger which eliminates fatigue to the user. For best accuracy keep the conductor at center of the jaw as shown in figure e. User's hand is at safer distance from bare bus bar/conductor. #### 16.Empty Positions Empty positions on dial indicates no function is available on these positions. The digital display will look like as in figure below. There are three empty positions present on the dial. # 17. Specifications | Function Neasuring Range Iution Input impedance +digits)at reference conditions 1000 Value 2000 | Meas- | | dions | D | | | Intrinsic error of digital display | Overl
capac | | |--|---------|------------------|------------|--------|-----------------|----------|---|-----------------|----------------------| | V 300.0 mV 100 mV >100 mV >100 GΩ// < 40pF 0.5+3 | urement |
Measuring Range | | | Input impedance | | reference
conditions | | Overload
duration | | V 3.000 W 100 W >100 CM < 40pF 0.5+3 DC CM < 40pF 0.25+1 AC O25+1 AC O25+1 O25 | | | | | | | 0.5+3 2) | 1000\/ | | | V == 30.00 | | 300.0 mV | | 100 mV | >10G Ω | | 0.5+3 | | | | 30.00 | V | | | | | | | DC | | | OCC 100m 100m 100m 20 40pF 0.25 + 1 0.35 + 1 0 | • | | | | | | | AC | Contin-
uously | | V | | | | | | | | | uousiy | | V~ (TRMS) 30.00 V 10mV 10M Ω / V 40pF (10300 Digit) 0.75 + 1 wave wave wave wave wave wave | | | | | | | | GII/IIIIS | | | CTRMS 300.0 V 100mV 10M Ω// < 40pF (>300 Digit) 1000 V 1V 10M Ω// < 40pF (>300 Digit) 1000 V 1V 10M Ω// < 40pF (>300 Digit) 1000 V 1V 10M Ω// < 40pF (>300 Digit) 1000 V 1V 10M Ω// < 40pF (>300 Digit) 1000 V 100 Ω | \ \/ | | | | | | | sine | | | 1000 V 1V 10M Ω// < 40pF (>3000 Digit) | • | | | | | | | wave | | | 30.00 Ω 10m Ω max.3.2 V 0.5+3 20 1000V | (TRMS) | | | | | | | | | | Ω 30.00 Ω 100m Ω max 3.2 V 0.5÷3 1000V 100 Ω max 1.25 V 0.4+1 DC 30.00 kΩ 10 Ω max 1.25 V 0.4+1 DC 30.00 kΩ 10 Ω max 1.25 V 0.4+1 AC eff/rms 30.00 MΩ 10 kΩ max 1.25 V 0.6÷1 eff/rms sine wave | | | | | Noload | voltage | | | | | Ω 3.000 kΩ 10Ω max.1.25 V 0.4+1 30.00 kΩ 10ΩΩ max.1.25 V 0.4+1 4C eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 10 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 11 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 11 10 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 12 r max.1.25 V 0.4+1 AC eff/rms sine wave 13 0.00 M 0.1 A | | 3 | 0.00 Ω | 10m Ω | max. | 3.2 V | 0.5+3 ²⁾ | | | | 30.00 kΩ 10 Ω max 1.25 V 0.4+1 AC eff/rms sine wave 30.00 kΩ 100 Ω max 1.25 V 0.6+1 AC eff/rms sine wave 10 α max 1.25 V 0.6+1 AC eff/rms sine wave 1 | | 3 | 00.0 Ω | 100m Ω | max. | 3.2 V | | 1000V | | | 30.00 kΩ 10 Ω max.1.25 V 0.4+1 AC eff/rms sine Max.1.25 V 0.4+1 AC eff/rms sine Max.1.25 V 0.6+1 AC eff/rms sine Max.1.25 V 0.6+1 AC eff/rms sine Max.1.25 V 0.25+1 Max. | Ω | 3.0 | 00 kΩ | 1Ω | max. | 1.25 V | 0.4 + 1 | | | | 3000 KΩ 100 Ω max. 125 V 0.4 + 1 AC eff/rms sine | | 30. | 00 kΩ | 10 Ω | max. | 1.25 V | 0.4 + 1 |] DC | 10 min | | South So | | 300 |).0 kΩ | 100 Ω | max. | 1.25 V | 0.4 + 1 | ۸, | 10 111111 | | Camp 1000 V 1mV max 3.2 V 0.25 + 1 wave | | _ | | | | | | | | | A | | | | | | | | sine | | | Clamp 2000A 1000A 1A | - | 2. | | | max. | 3.2 V | 0.25 + 1 | wave | | | C C C C C C C C C C | A~ | Clamp 100 | | | | | | 1100A | Contin- | | A | | 0.2 to 30A | | 0.01A | | | | | uously | | Camp-3000A 1000A 1A 1100A 330A 0.01A 330A 0.01A 330A 0.01A 330A | _ | Clamp300A 300.0A | | | | | 1.5 % of range +5 digits | 330A | | | C C C C C C C C C C | A | | | | | | | 1100A | Contin-
uously | | OC Pot 1000 | | 30A | | | | | | 330A | | | $ \begin{array}{c} {}^{\circ} C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | | Giampoo | 971 300.0A | U. IA | Discharge | LI n max | | | | | $ ^{\circ}C = $ | | | -200.0 | | Resistance | O timax | 2Kelvin+ | | | | $ \begin{array}{c} {}^{\circ}\text{C} \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{D} \\ \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{D} \\ \\ {}^{\circ}\text{C} \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{C} \\ \\ {}^{\circ}\text{C} \\ \\ \\ {}^{\circ}\text{C} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | | nt | +200.0 °C | 0.1 °C | - | - | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ٥ | | | 0.1 °C | - | - | 1.0+5 ³⁾ | | | | F 30.00 nF 10pF 250 kΩ 2.5 V 1.0+3 4) 1000V 20 | | | | 0.1 °C | - | - | | AC | 10min | | F 300.0 nF 100pF 250 kΩ 2.5 V 1.0+3 DC/ AC eff/rms sine 300.0 μF 1nF 250 kΩ 2.5 V 1.0+3 Sine 300.0 μF 10nF 250 kΩ 2.5 V 3.0+3 Sine 300.0 μF 1 Hz 1 Hz 45 Hz 3.000 KHz 1 Hz 1 Hz 45 Hz 3.000 KHz 10 Hz 10 Hz 45 Hz 100.0 KHz 100 Hz H | | 1000 | | 0.1 °C | _ | - | 1.0+2 3) | | | | 3000 μF 100μF 250 kΩ 2.5 V 1.0+3 AC eff/rms 3000 μF 10nF 250 kΩ 2.5 V 3.0+3 Sine | _ | 30.00 | nF | 10pF | 250 kΩ | 2.5 V | 1.0+3 4) | 1000V | | | 3.000 μF 1nF 250 kΩ 2.5 V 1.0+3 HZ HZ 30.00 μF 10nF 250 kΩ 2.5 V 3.0+3 effrms sine 300.0 Hz 0.1 Hz 1 Hz 45 Hz 3.000 KHz 10 Hz 10 Hz 45 Hz 30.00 KHz 10 Hz 100 Hz 100 Hz 100.0 KHz 100 Hz 100 Hz 100 Hz 3.000 KHz 3.000 KHz 100 Hz 3.000 KHz 100 Hz 3.000 KHz | F | | | 100pF | 250 kΩ | 2.5 V | 1.0+3 | | Contin- | | Hz = 100 KHz | | | | 1nF | 250 kΩ | 2.5 V | | | uously | | Hz 3.000 KHz 1 Hz 1 Hz 45 Hz 100.0 KHz 100 Hz H | | 30.00 µF | | 10nF | 250 kΩ | 2.5 V | 3.0+3 | | | | Hz 3.000 KHz 1 Hz 1 Hz 45 Hz 0.5+1 1000V <=30KHz; 100 Hz 100 Hz 100 Hz 300V L=30KHz; 300V L=300KHz; L=300K | Hz | 300.0 Hz | | 0.1 Hz | 1 Hz | 45 Hz | | <=3K∏→- | | | 30.00 KHz 10 Hz 10 Hz 45 Hz | | 3.000 KHz | | 1 Hz | 1 Hz | 45 Hz | | | | | 100.0 KHz 100 Hz 100 Hz 300V uot | | 30.00 KHz | | 10 Hz | 10 Hz | 45 Hz | | | Contin- | | | | | | 100 Hz | 100 Hz | 100 Hz | | l | uously | | % 2.098.0 % 0.1 % 2 Hz — 2Hz1KHz. ±5digits 5) 30V 1 KHz10KHz; ±5 DigitsKHz | % | 2.0 | 98.0 % | 0.1 % | 2 Hz | _ | 2Hz1KHz ±5digits 5)
1 KHz10KHz; ±5 Digts/KHz | <=100KHz
30V | | ¹⁾ At 0° ...+40 °C ²⁾ With zero adjustment, without zero adjustment +35 digits ³⁾ Without sensor - 4) $3VU = 1.5V_{effirms}...100V_{effirms}$ $30VU = 15V_{effirms}...300V_{effirms}$ $300VU = 150V_{effirms}...1000V_{effirms}$ - 5) On the range 3V --- , Square wave signal positive on one side 5...15V, F = const., not 163.84 Hz or integral multiple ## Reference conditions $\begin{array}{lll} \mbox{Ambient temperature} & : + 23 \ ^{\circ}\mbox{C} \pm 2\mbox{K} \\ \mbox{Relative humidity} & : 45\% \dots 55 \ ^{\circ}\mbox{RH} \\ \mbox{Frequency of measured quantity} & 45\mbox{Hz} \dots 65 \ ^{\circ}\mbox{Hz} \\ \mbox{Waveform of the measured quantity} & sinusoidal \\ \mbox{Battery voltage} & 8V \pm 0.1\mbox{V} \end{array}$ ### Influence Quantities and Variations | Influence
quantity | Range of Influence | Measured
quantity/
Measuring range | Variation
Clamp MeterA | |-----------------------
-----------------------------|--|---------------------------| | | | V | ±2Digit | | Battery | 1)
1<7.9V | V~ | <u>+</u> 4 Digit | | voltage | >8.1V10.0V | 30Ω/300Ω/ °C | <u>+</u> 4Digit | | | | 3kΩ30 ΜΩ | ±3Digit | | | | A ~ A | ±8 Digit | | | | F,Hz,% | ±10 Digit | | Relative
humidity | 75 %
3 days
Meter off | $V \cong A \sim \Omega$,F,Hz, $\%$ | 1 x intrinsic error | | HOLD | - | | ±1Digit | | MIN/MAX | = | V≃,A~ | ±2 Digit | ## 1) After the" symbol is displayed. | Influence
quantity | Range of Influence | Measuring ranges | Attenuation | |---|--|------------------|-------------| | Common | Noise quantity max.1000V ~ | V | > 120 dB | | mode | No | 3V~ ,30V ~ | > 70 dB | | interference
voltage | Noise quantity max.1000V ~ 50Hz,60Hz sinusoidal | 300V ~ | > 70 dB | | | | 1000V ~ | > 60 dB | | Normal
mode
interference
voltage | Noise quantity V~
value of the measuring range at a time
max.1000V ~ ,50Hz,60Hz.
sinusoidal | V | > 50 dB | | | Noise quantity max.1000V - | V~ | > 110 dB | | Influence
quantity | Range of Influence | Measured
quantity/
Measuring range | Variation ¹⁾
<u>+</u> (%of rdg.+digits) | |--|--|--|---| | | | 30/300mV | 1.0+3 | | | | 3300V === | 0.15+1 | | | | 1000V | 0.2+1 | | | | ∨~ | 0.4+2 | | | 0°C | 30 Ω ²⁾ | 0.15 + 2 | | Temperature | +21°C | 300 Ω | 0.25+2 | | | and | 3ΚΩ - 3ΜΩ | 0.15+1 | | | +25°C+40°C | 30M Ω | 1.0+1 | | | | - 200 + 200°C | 0.5°C+2 | | | | +200+850 °C | 0.5+2 | | | | 300/30 A ===, A~ | ± 0.2 x specified accuracy +10 | | | | 1000/300A===, A~ | ± 0.1 x specified accuracy +10 | | | >65Hz400Hz | | 2.0+3 | | | > 400 Hz 1 kHz | 3300V ~ | 2.0+3 | | Frequency | >65Hz1kHz | 1000V ~ | 3.0+3 | | ofthe
measured
quantity | 15Hz< 30Hz
30Hz < 45Hz
66 Hz< 400 Hz | A~ | ± 1% of range +1 | | | Crest 1 3 | | ± 1% of rdg. | | | Crest <u>13</u>
factorCF >35 | V~ ⁴⁾ , A~ ⁴⁾ | ± 3% of rdg. | | Waveform of the measured quantity of quant | | | | With Temperature : Error for data apply per 10 K change in temperature For A AC/DC error data apply per K change in temperature With Frequency : Error data apply to a display from 300 digits on wards - 2) With zero adjustment - With unknown waveform (crest factor CF > 2), measure with manual range selection - 4) With exception of sinusoidal waveform. ## Display Liquid crystal display section (52 mm x 38 mm) with analog indication and digital display and with display of the unit of measured quantity, function and various special functions. Analog: Indication LCD scale with pointer Scale length 55 mm Graduation $+5...0...\pm30$ with 29 scale divisions on ---, 0...30 with 25 scale divisions on all other ranges Polarity indication with automatic change-over Over range indication by triangle (13) Sampling rate 20 reading/s, on Ω ; 10 reading/s Digital: Display/Height of numer. 7-segment numerals/12mm Number of digits 3*digit \(\times \) 3100 counts Over range "OL" is displayed. Polarity indication "-" sign is displayed, when the positive pole is at " \perp " Sampling rate 2 reading/s, on Ω and ${}^{\circ}\text{C}$; 1 reading/s Power supply Battery 9V flat cell battery; manganese dioxide cell according to IEC 6F22. alkaline-manganese cell according to IEC6LR61 or suitable NiCd storage battery. Lifespan Without Backlit ON, using alkaline-manganese cell: approx. 220 hours on V ---, approx. 80 hours on V~ Battery test Automatic display of the " symbol, when the battery voltage drops below approx. 7 V. **Electrical Safety:** As per IEC 61010-1 : 2010-06 Protection class : II Measuring Category : III IV 1000V 600V Pollution Degree : Test Voltage : 7.4 kV - between housing and input 4.26 kV - between housing with jaws and input EMC Electromagnetic compatibility Emission EN 61326 : 2002 Class B Immunity EN 61326: 2002 IEC 61000-4-2 8 kV atmosphere discharge 4 kV contact discharge IEC 61000-4-3 : 3 V/m **Ambient conditions** Functional temperature range -10°C...+50°C Storage temperature range -25°C...+70°C without batteries Altitude up to 2000 m Mechanical configuration Dimensions 90 mm(W) x 270 mm(L) x 70 mm (H) Weight 600 g approx.,including battery ## Response time (after manual range selection) | Measured quantity/ | Respon | se time | Transient response for | |------------------------------------|----------------------|-----------------------|--| | measuring range | of analog indication | of digital
display | step function of the measured quantity | | V <u></u> , V ~
A <u></u> , A ~ | 0.7s | 1.5s | from 0 to 80 % of upper range limit | | 30Ω3ΜΩ | 1.5s | 2s | | | 30ΜΩ | 4s | 5s | from ∞ to 50% | | | 0.7s | 1.5s | of upper range limit | | μF, °C | | Max.13s | | | 300 Hz,3 KHz | | Max.2s | from 0 to50% | | 30,100 KHz | | Max.0.7s | of upper range limit | | % (1Hz) | | Max. 9s | | | % (>=1Hz) | | Max.2.5s | | ## 18. Maintenance #### Caution Disconnect the meter from the measuring circuit before you open it to replace the battery! ## 18.1. Battery Prior to initial start-up, or after storage of Delta 300 meter, verify that the batteries of Delta 300 meter, does not leak. Repeat this check in regular short intervals. If the battery leaks, completely remove the battery electrolyte carefully with a moist cloth and install a new battery before you operate Delta 300 meter, again. When the symbol " (17) flashes on the LCD (1) replace the battery as soon as possible. Measurement can be done, but a reduced measuring accuracy must be taken into account. The Delta 300 meter, operates with a 9 flat cell battery according to IEC6F 22 or IEC6LR 61 or with a suitable NiCd storage battery. ## Attention! Disconnect the instrument from the measuring circuit before opening battery cover to replace the batteries. #### Replacing the battery - Place the Delta 300/1000 on its face. Loosen the screw of battery cover Which is at rear bottom side of meter. Remove battery cover by Sliding it to bottom side. - Remove the battery from the battery compartment and carefully disconnect battery connectors. - Snap the battery connectors to a new 9 V battery and insert the battery in to the battery compartment. - Replace the battery cover by fitting it in to slots on battery compartment. - Tighten the battery cover with the screw. - Please destroy the batteries in an environment friendly way #### 18.2. Periodic Check-up: The Delta 300/1000 does not require any specific maintenance. The surface between opening jaws should be cleaned with dry cloth before operating. Avoid use of cleansers, abrasives or solvents. #### 19. Servicing When you need service, refer the cover page for company address. The Information contained in these installation instructions is for use only by installers trained to make electrical power installations and is intended to describe the correct method of installation for this product. It is the user's responsibility to determine the suitability of the installation method in the user's field conditions. #### WARRANTY Dear Customer, You are now the privileged owner of Digital Clamp Meter / Accessories, a product that ranks the first of its kind in the world. Company provides 36 months warranty from the original date of purchase against defective material and workmanship. In the unlikely event of failure of this meter / accessories within the warranty period, Company will repair the meter / accessories free of charges. Please hand over the meter / accessories to the dealer /Stockiest from whom you have purchased along with this card and relevant cash memo / Invoice. This warranty entitles you to bring the meter /
accessories at your cost to the nearest stockiest / dealer and collect it after repairs. ## NO TRANSPORTATION CHARGES WILL BE REIMBURSED The warranty is not valid in following cases: - 1) Warranty card duly signed / stamped and original cash memo / invoice are not sent along with the meter/accessories. - Complete warranty card is not presented to authorised person at the time of repairs. - Meter / accessories not used as per the instruction in the user manual. - Defect caused by misuse, negligence, accidents, tampering and acts of god. - Improper repairing by any person not authorised by the company. - Any sort of modification, alteration is made in electrical circuitry. - 7) Seal provided inside is broken. Warranty of Digital Clamp Meter / Accessories does not cover fuses and battery. Incase of dispute to the validity of warranty, the decision of Company's service center will be final. If you bought this meter / accessories directly from the company, and if you notice transit Damage, then you must obtain the insurance surveyors report and forward it to Company. Thank you. | (To be filled by authorized dealer) | | | | | |-------------------------------------|---|--|--|--| | Model No. | : | | | | | Serial Number | : | | | | | Date of Purchase | : | | | | | Cash Memo / Invoice No. | : | | | | | Dealer's Signature | : | | | | | Dealer's Stamp | : | | | | | | | | | | # Scope of Supply: - 1) Meter - Carrying Case - 5) User Manual - 7) Test Certificate - 2) Cable set - 4) Battery - 6) Warranty Card | | | I I Sifam Tinsley Instrumentation 3105, Creekside Village Drive, Suite No 801, Kennesaw, Georgia 30144 Contact Number: +1.404.736.4903 Web: www.sifamtinsley.com Sifam Tinsley Instrumentation Ltd. Central Buildings, Woodland Close, Old Woods Trading Estate, Torquey, Devan, England, TQ27BB Website: www.sifamtinsley.com/uk Contact Number: +44(O) 1803 615139 E-mail: info@tinsley.co.uk