

# TEMPERATURE and HUMIDITY TRANSDUCER P19 TYPE



**USER'S MANUAL** 



# Contents

| 1. APPLICATION                                  | 5  |
|-------------------------------------------------|----|
| 2. TRANSDUCER SET                               | 5  |
| 3. BASIC REQUIREMENTS, OPERATIONAL SAFETY       | 6  |
| 4. INSTALLATION                                 | 6  |
| 4.1. Overall dimensions and working position    | 6  |
| 4.2. Electrical connections                     | 7  |
| 4.3. Assembly                                   | 8  |
| 5. SERVICING                                    | 10 |
| 5.1. Messages after supply is switched on       | 10 |
| 5.2. Functions of the P19 transducer            | 10 |
| 5.2.1. Calculated values                        |    |
| 5.2.2. Default parameters                       | 12 |
| 6. MODBUS PROTOCOL ON RS-485 SERIAL PORT        | 12 |
| 6.1. Serial interface connection                | 12 |
| 6.2. Description of the MODBUS protocol         | 13 |
| 6.3 Description of implemented MODBUS functions | 13 |
| 6.4 Register map                                |    |
| 6.5 Read/Write registers                        | 19 |
| 6.6 Read only registers                         | 21 |
| 7. EMERGENCY RESTORATION OF RS-485 PARAMETERS   |    |
| 8. TECHNICAL DATA                               | 23 |
| 9. ORDERING CODE                                | 25 |

### 1. APPLICATION

The P19 transducer is device destined for the continuous measurement and conversion of relative humidity and ambient temperature into a digital form (protocol MODBUS RS-485). The transducer is fixed on a wall. The programming of the transducer is possible by means of the RS-485 interface.



Fig. 1. View of the P19 transducer.

### 2. TRANSDUCER SET

The delivered controller set is composed of:

| 1. transducer P19 | 1 | рс |
|-------------------|---|----|
| 2. user's manual  | 1 | рс |
| 3 guarantee card  | 1 | nc |

### 3. BASIC REQUIREMENTS, OPERATIONAL SAFETY

In the security scope, the transducer meets the requirements of the EN 61010 -1 standard.  $\land$ 

# Remarks concerning the operator safety:

- All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel.
- Before switching the transducer on, one must check the correctness of connections to the network.
- The device is destined to be installed and used in industrial electromagnetic environment conditions.

When unpacking the P19 transducer, please check whether the type and version code on the data plate correspond to the order code.

### 4. INSTALLATION

### 4.1. Overall dimensions and working position

The P19 transducer is designed to be mounted on a wall by means of a screw connection. Transducer housing is assembled of two parts: front part and back part. The transducer has screw connectors placed inside the transducer, which enable the connection of external wires of 1 mm<sup>2</sup> cross-section.

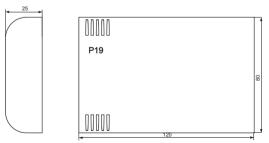



Fig. 2. Overall dimensions of the P19 transducer and correct
working position

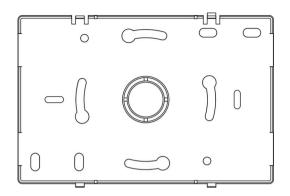



Fig. 3. Lay-out of assembly holes in back part of housing

### 4.2. Electrical connections

The P19 transducer has 4 connecting terminals to which there is access after removing the front part of the transducer housing.

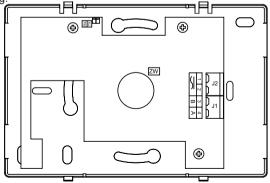



Fig 4. Marking of terminals for the connection of external signals

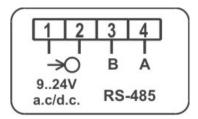



Fig. 5. Way of electrical signal connection

Transducer is equipped with two LED indicator: RX (green color), TX (red color), which indicates the state of RS-485 communication lines. Indicators works only first 60 sec after power is on or after switching "ZW" jumper (section 7).

# 4.3. Assembly

On the beginning one must separate front part of housing from back part of housing with printed circuit board using flat screwdriver as shown on Fig. 6.

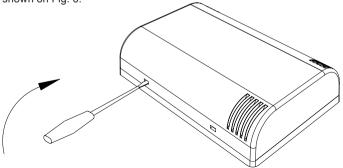



Fig. 6. Disassembly housing method

Back part of housing is equipped with hole at the middle of housing through which electrical cords should be passed. Then back part of housing should be screwed on to the wall. Electrical cords should be passed through the hole on the printed circuit board (Fig. 7) and connected to the screw connectors with the right way (Fig. 5)

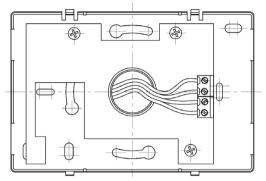



Fig. 7. The way of assembly electrical cords

After connecting cords and pushing the front part of housing transducer is ready to work.

To connect the input signals in an environment with high interference, one must apply shielded wires. The shield must be connected to the nearest PE point from the feeder side.

### 5. SERVICING

After connecting cords, closing the housing, and connecting to the supply, the transducer is ready to work with manufacturer's settings (table 2). The transducer can be programmed through the RS-485 interface. One can program following parameters in the transducer:

- communication parameters
- averaging time of the measurement

There is the possibility to connect the transducer through another transmission media, like: ETHERNET, USB, using LUMEL S.A.'s converters

### 5.1. Messages after supply is switched on

After connecting external signals and switching the supply on, the transducer indicates its ready to work by switching on two LED indicators RX(green color) i TX(red color). After about 5 seconds, the transducer automatically switches to the mode in which it measures and converts into the digital value.

### 5.2. Functions of the P19 transducer

- measurement of ambient temperature and relative humidity,
- calculation of chosen physical quantities (dew-point temperature, absolute humidity),
- memory storage of maximal and minimal values for each of the measured and calculated value,
- programming of the measurement averaging time,
- RS-485 interface servicing in the MODBUS protocol, in RTU mode.

### 5.2.1. Calculated values

Based on measured temperature and relative humidity the P19 transducer calculates dew-point and absolute humidity from the following relations.

$$DP \to dew \ point: \qquad DP = \frac{T_n}{\log \left( P_{ws} \cdot \frac{RH}{10000 \cdot A} \right)} - 1$$

$$AH \rightarrow absolute \ humidity: \ AH= 2.1668 \cdot \frac{P_{ws} \cdot RH}{100 \cdot (T + 273.2)}$$
where:

T → measured temperature [oC]

RH → measured relative humidity [%]

DP → dew-point temperature [oC]

 $P_{ws} \rightarrow pressure of the satured water vapor (water vapor pressure) [mbar]$ 

AH → absolute humidity [g/m3]

Table 1

| Coefficients used for the dew-point calculations |             |          |          |  |  |  |  |  |  |
|--------------------------------------------------|-------------|----------|----------|--|--|--|--|--|--|
| T [°C]                                           | [°C] A m Tn |          |          |  |  |  |  |  |  |
| < 0                                              | 6.119866    | 7.926104 | 250.4138 |  |  |  |  |  |  |
| 0 50                                             | 6.1078      | 7.5      | 237.3    |  |  |  |  |  |  |
| 50100                                            | 5.9987      | 7.3313   | 229.1    |  |  |  |  |  |  |

### 5.2.2. Default parameters

Table 2 shows the default parameters of P19 transducer. These settings can be restored using the RS-485 interface by writing into the 4009 register the value "1".

Table 2

| Parameter description | Parameter address | Default value |  |  |
|-----------------------|-------------------|---------------|--|--|
| Address               | 4001              | 1             |  |  |
| Baud rate             | 4002              | 9600          |  |  |
| Mode                  | 4003              | RTU 8N2       |  |  |
| Averaging time        | 4005              | 30 [s]        |  |  |

When standard communication parameters have been changed and the new configuration has been lost, one can set temporary parameters by switching the jumper marked with the symbol "ZW" (section 7).

### 6. MODBUS PROTOCOL ON RS-485 SERIAL PORT

Digital P19 transducers are equipped with serial RS-485 link port with implemented MODBUS protocol to enable digital communication between computer systems and other devices which have MODBUS Master functions implemented. The implemented protocol is in compliance with the PI-MBUS-300 Rev G Modicon Company specification.

### 6.1. Serial interface connection

Standard RS-485 port allows direct connection of up to 32 devices on a single serial link with a length of 1200 m (at a baud rate of 9600 b/s). To connect more devices it is necessary to use additional intermediate-separating devices.

Interface line location are shown in the figure 5. To obtain a correct transmission it is necessary to connect the A and B line parallel with their counterparts in other devices. To connect to the PC, the RS-485 interface card or the converter, e.g. PD10 is required.

# 6.2. Description of the MODBUS protocol

The implemented protocol is in compliance with the PI-MBUS-300Rev G Modicon Company specification. Parameters of the transducer serial link:

transducer address 1..247

baud rate: 4800, 9600, 19200, 38400, 57600 [b/s]

working modes: RTU: 8N2, 8E1, 8O1, 8N1

maximal response time: 500 ms

The configuration of serial link parameters consists on settlement of baud rate, device address and protocol (working mode).

**Note:** Each transducer connected to the communication network must have:

- unique address, different from other devices connected to the network,
- the same baud rate and information unit type (working mode).

# 6.3 Description of implemented MODBUS functions

Functions of the Modbus protocol implemented in P19 transducer::

- 03 (03h) Read Holding Registers
- 04 (04h) Read Input Registers
- 06 (06h) Write Single Register

- 16 (10h) Write Multiple registers
- 17 (11h) Report Slave ID.

### Read Holding Registers (code 03h)

**Example 1.** Reading two float(32 bits) registers, first register address is 1D4Dh (7501), register values (7501, 7502): 25.68, 20.25.

# Request:

Table 3

| Device address | Fun-<br>ction | Regi<br>addı |         |    | nber<br>isters | CRC   |
|----------------|---------------|--------------|---------|----|----------------|-------|
|                |               | B1           | В0      | B1 | В0             |       |
| 01h            | 03h           | 1Dh          | 1Dh 4Dh |    | 02h            | 5270h |

# Response:

Table 4

| ice  | unction | nber<br>ytes |     | 1DB0h (7501) |     |     |     | 1DB1h (7502) |     |     |       |  |  |  |
|------|---------|--------------|-----|--------------|-----|-----|-----|--------------|-----|-----|-------|--|--|--|
| addı | Func    | Nun<br>of b  | В3  | B2           | B1  | В0  | В3  | B2           | B1  | В0  | CRC   |  |  |  |
| 01h  | 03h     | 08h          | 41h | CDh          | 70h | A4h | 41h | A2h          | 00h | 00h | 83D0h |  |  |  |

**Example 2**. Reading two float 32-bit registers (7501,7502) located in 2x2 following 16-bit registers (7002, 7003, 7004, 7005), first register address is 1B5Ah (7002) - 32-bit register values : 25.68, 20.25.

# Request:

Table 5

| Device address | Fun-<br>ction |     | Register address |     | nber<br>isters | CRC   |
|----------------|---------------|-----|------------------|-----|----------------|-------|
|                |               | B1  | В0               | B1  | В0             |       |
| 01h            | 03h           | 1Bh | 5Ah              | 00h | 04h            | 62FEh |

# Response:

Table 6

| Device<br>ddress<br>unction<br>lumber<br>if bytes |      | va<br>1B           | Register         Register           value         value           1B5Ah         1B5Bh           (7002)         (7003) |                              |     | va<br>1B | ister<br>lue<br>5Ch<br>04)   | Register<br>value<br>1B5Dh<br>(7005) |     |     |       |
|---------------------------------------------------|------|--------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|-----|----------|------------------------------|--------------------------------------|-----|-----|-------|
| Device<br>address                                 | Func | Number<br>of bytes | Reg                                                                                                                   | Register 7501 (32 bit) value |     |          | Register 7502 (32 bit) value |                                      |     |     | CRC   |
|                                                   |      |                    | В3                                                                                                                    | B2                           | B1  | В0       | В3                           | B2                                   | B1  | В0  |       |
| 01h                                               | 03h  | 08h                | 41h                                                                                                                   | CDh                          | 70h | A4h      | 41h                          | A2h                                  | 00h | 00h | 83D0h |

**Example 3.** Reading two float 32-bit registers (7501,7502) located in 2x2 following 16-bit registers (6002, 6003, 6004, 6005), first register address is 1772h (6002) - 32-bit register values: 25.68, 20.25.

# Request:

Table 7

| Device address | Function |     | Register address |     | Number of registers |       |  |
|----------------|----------|-----|------------------|-----|---------------------|-------|--|
|                |          | B1  | В0               | B1  | В0                  |       |  |
| 01h            | 03h      | 17h | 72h              | 00h | 04h                 | E1A6h |  |

# Response:

Table 8

| sse<br>ess        | tion     | ımber<br>bytes | Register<br>value<br>1B5Ah<br>(7002) |                     | value<br>1B5Ah |     | va<br>1B                     | jister<br>Ilue<br>5Bh<br>003) | Register<br>value<br>1B5Ch<br>(7004) |     | value<br>1B5Ch |  | Register<br>value<br>1B5Dh<br>(7005) |  |  |
|-------------------|----------|----------------|--------------------------------------|---------------------|----------------|-----|------------------------------|-------------------------------|--------------------------------------|-----|----------------|--|--------------------------------------|--|--|
| Device<br>address | Function | Num<br>of by   | Reg                                  | Register 7501 (32 b |                |     | Register 7502 (32 bit) value |                               |                                      |     | CRC            |  |                                      |  |  |
|                   |          |                | B1                                   | В0                  | B1             | В0  | В3                           | B2                            | B1                                   | В0  |                |  |                                      |  |  |
| 01h               | 03h      | 08h            | 70h                                  | A4h                 | 41h            | CDh | 00h                          | 00h                           | 41h                                  | A2h | E411h          |  |                                      |  |  |

Write Single Register (code 06h)
Example 4. Writing value "3" to the register 0FA1h (4001)

# Request:

Table 9

| Device address | Function |     | Register<br>address |     | Number of registers |       |  |
|----------------|----------|-----|---------------------|-----|---------------------|-------|--|
|                |          | B1  | В0                  | B1  | В0                  |       |  |
| 01h            | 06h      | 0Fh | A1h                 | 00h | 03h                 | 983Dh |  |

# Response:

Table 10

| Device address | Function |     | Register<br>address |     | nber<br>isters | CRC   |
|----------------|----------|-----|---------------------|-----|----------------|-------|
|                |          | B1  | В0                  | B1  | В0             |       |
| 01h            | 06h      | 0Fh | A1h                 | 00h | 03h            | 983Dh |

# Write Multiple registers (code 10h)

**Example 5.** Writing value "3" and "4" to registers FA1h (4001) and FA2h (4002)

Request: Table 11

| Device<br>address | unction | address o |     | of r | nber<br>egi-<br>ers | Num-<br>ber of<br>bytes | Register<br>value<br>(4001) |     | Register<br>value<br>(4002) |     | CRC   |
|-------------------|---------|-----------|-----|------|---------------------|-------------------------|-----------------------------|-----|-----------------------------|-----|-------|
| ago               | 2       | B1        | В0  | B1   | В0                  |                         | B1                          | В0  | B1                          | В0  |       |
| 01h               | 10h     | 0Fh       | A1h | 00h  | 02h                 | 04h                     | 00h                         | 03h | 00h                         | 04h | 8828h |

# Response:

Table 12

| Device address | Function | Register address |     | Number<br>of registers |     | CRC   |  |
|----------------|----------|------------------|-----|------------------------|-----|-------|--|
|                |          | B1               | В0  | B1                     | В0  |       |  |
| 01h            | 10h      | 0Fh              | A1h | 00h                    | 02h | 133Eh |  |

# Report Slave ID (code 11h) Example 6. Report slave ID

Request: Table 13

| Device address | Function | CRC   |  |
|----------------|----------|-------|--|
| 01h            | 11h      | C02Ch |  |

# Response:

Table 14

| Address | Function | Number<br>of bytes | <u>Q</u> | Device<br>state | Variable bytes depending on<br>device firmware ver. And serial<br>number (neg. ver. 0.95, serial<br>number. 13040001) | CRC   |
|---------|----------|--------------------|----------|-----------------|-----------------------------------------------------------------------------------------------------------------------|-------|
| 01h     | 11h      | 08h                | D0h      | FFh             | 00h 95h 40h 01h 80h 0Dh                                                                                               | DFC3h |

# 6.4 Register map

In the P19 transducer the data is stored in 16- and 32-bit registers. The process variables and parameters of the device are stored in the different address space depending on the variable type. The bits in the 16-bit registers are numbered from the least significant to the most significant (b0 ... b15). The 32-bit registers (4 Bytes) contain floating-point values in IEEE-754 standard. Bytes sequence: B3 B2 B1 B0 – the most significant byte is sent as the first one. 16-bit registers which represents 32-bit values on a two following registers are multiplied at different address field with different bytes (word) order. Registers 6000...6024 (B1, B0, B3, B2), Registers 7000...7024 (B3, B2, B1, B0). Register map of the P19 transducer is shown in Table 15.

### Note:

All the given addresses are physical addresses. In some computer programs logical addressing is applied, then the addresses should be increased by 1.

Table 15

Address Value Description type range integer The value is located in the 16-bit register 4000 - 4011 (16 bits) 6000-6024 float The value is located in two following 16-bit registers. Registers contain the same data (32 bits) as 32-bit registers from the area 7500-7512. Registers are readout type only. Byte order (B1, B0, B3, B2) The value is located in two following 16-bit 7000-7024 float registers. Registers contain the same data (32 bits) as 32-bit registers from the area 7500-7512. Registers are readout type only. Byte order (B3, B2, B1, B0) 7500-7512 float The value is located in the 32-bit register. (32 bits) Registers contain measured and calculated data by the transducer. Registers are readout type only. Byte order (B3, B2, B1, B0)

| Address | Name                    | Read(r)/<br>Write (w) | Range | Description              |                          |  |
|---------|-------------------------|-----------------------|-------|--------------------------|--------------------------|--|
| 4000    | Identifier              | r                     | 208   | Identifie                | er of the P19 transducer |  |
| 4001    | Address                 | r/w                   | 1247  | Device                   | address                  |  |
| 4002    | Baud rate               | r/w                   | 05    | Value                    | Description              |  |
|         | of the RS-<br>485 link  |                       |       | 0                        | 4800 bit/s               |  |
|         | 400 IIIIK               |                       |       | 1                        | 9600 bit/s               |  |
|         |                         |                       |       | 2                        | 19200 bit/s              |  |
|         |                         |                       |       | 3                        | 38400 bit/s              |  |
|         |                         |                       |       | 4                        | 57600 bit/s              |  |
| 4003    | Transmis-               | r/w                   | 03    | Value                    | Description              |  |
|         | sion mode of the RS-    |                       |       | 0                        | RTU 8N1                  |  |
|         | 485 link                |                       |       | 1                        | RTU 8N2                  |  |
|         |                         |                       |       | 2                        | RTU 8E1                  |  |
|         |                         |                       |       | 3                        | RTU 801                  |  |
| 4004    | Accepta-                | r/w                   | 01    | Value                    | Description              |  |
|         | tion of RS-<br>485 link |                       |       | 0                        | no changes               |  |
|         | parameter<br>changes    |                       |       | 1 acceptation of changes |                          |  |
| 4005    | Averaging time          | r/w                   | 63600 | Measur                   | ement averaging time [s] |  |

|      | Erasing of         | r/w | 01              | Value                                                                                                                                                    | Description                                                                 |  |
|------|--------------------|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
|      | extremes           |     |                 | 0                                                                                                                                                        | no changes                                                                  |  |
|      |                    |     |                 | 1                                                                                                                                                        | Erasing of min and max value                                                |  |
| 4007 | Status<br>register | r/w | -32768<br>32767 | Transducer status. Describe current state and device configuration. Bits representing specific events. Value bit '1' means that specific event occurred. |                                                                             |  |
|      |                    |     |                 | Bit15                                                                                                                                                    | Supply reset, writing value -32768 ( 8000h ) clears status bit              |  |
|      |                    |     |                 | Bit14                                                                                                                                                    | Calibrations parameters error                                               |  |
|      |                    |     |                 | Bit13                                                                                                                                                    | Incorrect transducer parameters – new parameters required                   |  |
|      |                    |     |                 | Bit12                                                                                                                                                    | unused                                                                      |  |
|      |                    |     |                 | Bit11                                                                                                                                                    | unused                                                                      |  |
|      |                    |     |                 | Bit10                                                                                                                                                    | Min/max erasing status,<br>writing value 1024 ( 400h )<br>clears status bit |  |
|      |                    |     |                 | Bit9                                                                                                                                                     | Temporary communication parameters set (short circuit "ZW" jumper)          |  |
|      |                    |     |                 | Bit8                                                                                                                                                     | unused                                                                      |  |
|      |                    |     |                 | Bit7                                                                                                                                                     | Communication with sensor error                                             |  |
|      |                    |     |                 | Bit5,6                                                                                                                                                   | unused                                                                      |  |
|      |                    |     |                 | Bit3,4                                                                                                                                                   | unused                                                                      |  |
|      |                    |     |                 | Bit2                                                                                                                                                     | Exceeding of measurement averaging time                                     |  |
|      |                    |     |                 | Bit1                                                                                                                                                     | unused                                                                      |  |
|      |                    |     |                 | Bit0                                                                                                                                                     | unused                                                                      |  |

| 4008 | Firmware ver.      | r   | 1999 | Firmware version x100 |                                                                                         |
|------|--------------------|-----|------|-----------------------|-----------------------------------------------------------------------------------------|
| 4009 | Restore            | r/w | 01   | Value                 | Description                                                                             |
|      | default<br>parame- |     |      | 0                     | no changes                                                                              |
|      | ters               |     |      | 1                     | Force restoring default parameters (value of register will automatically change to "0") |
| 4010 | reserved           |     |      |                       |                                                                                         |
| 4011 | reserved           |     |      |                       |                                                                                         |

# 6.6 Read only registers

Table 17

| Value is place in two following 16-bit registers, Those register have the same value like 32-bit register from range 7500 | Value placed in<br>32-bit<br>registers | Name  | Read<br>(r)/<br>Write<br>(w) | Unit             | Description                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|------------------------------|------------------|------------------------------|
| 7000/6000                                                                                                                 | 7500                                   | ID    | w                            | -                | P19 identifier               |
| 7002/6002                                                                                                                 | 7501                                   | Т     | W                            | °C               | Measured temperature         |
| 7004/6004                                                                                                                 | 7502                                   | RH    | w                            | %                | Measured relative humidity   |
| 7006/6006                                                                                                                 | 7503                                   | DP    | w                            | °C               | Calculated dew point         |
| 7008/6008                                                                                                                 | 7504                                   | АН    | w                            | g/m <sup>3</sup> | Calculated absolute humidity |
| 7010/6010                                                                                                                 | 7505                                   | min T | w                            | °C               | Min. measured temperature    |

| 7012/6012 | 7506 | max T  | w | °C               | Max. measured temperature         |
|-----------|------|--------|---|------------------|-----------------------------------|
| 7014/6014 | 7507 | min RH | W | %                | Min. measured relative humidity   |
| 7016/6016 | 7508 | max RH | w | %                | Max. measured relative humidity   |
| 7018/6018 | 7509 | min DP | w | °C               | Min. calculated dew point         |
| 7020/6020 | 7510 | max DP | w | °C               | Max. calculated dew point         |
| 7022/6022 | 7511 | min AH | w | g/m <sup>3</sup> | Min. calculated absolute humidity |
| 7024/6024 | 7512 | max AH | w | g/m <sup>3</sup> | Max. calculated absolute humidity |

# 7. EMERGENCY RESTORATION OF RS-485 PARAMETERS

When standard communication parameters have been changed and the new configuration has been lost, one can set temporary RS-485 parameters by switching jumper marked with the symbol "ZW" (Fig. 4.) Temporary RS-485 parameters are shown below:

address 247

baud rate
 mode
 9600 kb/s
 RTU 8N2

The changes of parameters must be made before removing the jumper, otherwise the device will return to its previous configuration.

### 8. TECHNICAL DATA

### **Basic parameters:**

- relative humidity range
- relative humidity measurement accuracy
- hysteresis of measuring relative humidity
- temperature range
- temperature measurement accuracy
- calculated values

### RS-485 interface:

- protocol
- baud rate
- mode
- maximal response time

# Rated operating conditions:

- supply voltage
- power consumption
- ambient temperature
- storage temperature
- relative humidity:
- warm-up time
- insured protection grade ensured by the housing
- mounting
- weight:
- dimensions

0...100 % <sup>1</sup>

±3% in range 10...90% ±5% for the remaining range

+ 1%

-20...60 °C <sup>2</sup>

 $\pm 0.6^{\circ}$ C in range  $10...40^{\circ}$  C  $\pm 1.0^{\circ}$ C for the remaining range

absolute humidity (a) [g/m³] dew point (Td) [°C]

### MODBUS slave

4800, 9600, 19200, 38400,

57600 bit/s

RTU: 8N2, 8E1, 8O1, 8N1

500 ms

9...24 V a.c. / d.c.

< 0.3 VA

- 20...23...60 °C

- 30...23...85 °C

< 95% <sup>1</sup>

<15 min.

IP 20 on the wall <0.2 kg

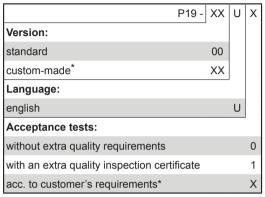
120 x 80 x 25 mm

Galvanic isolation

- between supply and RS-485 interface 1 kV

# Electromagnetic compatibility:

- disturbance immunity acc. to FN 61000-6-2 - disturbance emission acc to EN 61000-6-4


### Security requirements acc. to EN 61010-1

| - installation category          | III     |
|----------------------------------|---------|
| - pollution grade                | 2       |
| - phase-to-earth working voltage | 50V     |
| - altitude above sea level       | < 2000m |

- <sup>1</sup> In case of condensation of water vapor on the sensor surface, the error measurement does not exceed the basic error till the moment of drying up the sensor structure.
- <sup>2</sup> The absolute temperature measurement range is -30...85°C, but beyond the basic range, the measurement class is not quaranteed.

### 9. ORDERING CODE

Table 18



<sup>\*</sup>After agreeing with the manufacturer

### **Example of Order:**

The code: P19 - 00U0 means:

P19 - humidity and temperature transducer

00 - standard version

U - English language version

0 - without additional quality requirements.



### Sifam Tinsley Instrumentation Inc

3105, Creekside Village Drive, Suite 801 Kennesaw GA 30144

Kennesaw GA 30144

email – psk@sifamtinsley.com

Phone - +1 404 736 4903