DIGITAL
 PANEL METER N30P TYPE

USER'S MANUAL

Contents

1. APPLICATION and METER DESIGN 5
2. METER SET. 6
3. BASIC REQUIREMENTS, OPERATIONAL SAFETY 7
4. INSTALLATION 8
5. SERVICE 11
6. RS-485 INTERFACE 26
7. ERROR CODES 46
8. UPDATING OF SOFTWARE 48
9. TECHNICAL DATA 50
10. ORDER CODES 53
11. MAINTENANCE AND GUARANTEE 55

1. APPLICATION AND METER DESIGN

The N30P meter is a programmable digital panel meter destined for the measurement of a.c. voltage, a.c. current, active, reactive and apparent power, $\cos \varphi, \operatorname{tg} \varphi, \varphi$, frequency, active, reactive and apparent energy, 15,30 and 60 minutes' active power, 10 minutes' voltage, 10 seconds' frequency.
Additionally, the meter enables the indication of the current time. The readout field is composed of a display which allows to expose results in red, green and orange colours.
Features of the N3OP meter:

- display colour individually in three ranges,
- thresholds of displayed overflows,
- 2 NOC relay alarms operating in 6 modes,
- 2 switched relay alarms operating in 6 modes (option),
- signaling of measuring range overflow,
- automatic setting of the decimal point,
- programming of voltage and current ratios,
- programming of alarm and analog outputs with the reaction on any measured value, independently of the currently displayed value,
- storage of maximal and minimal values of all input quantities,
- reset of all watt-hour meters: active and reactive energy,
- programmed kind of 15,30 or 60 minutes' active power measurement: mean walking or synchronization with the RTC clock,
- manual synchronization of 15 minutes" power, 10 minutes' voltage,
- monitoring of set parameter values,
- interlocking of parameter introduction by means of a password,
- service of the interface with MODBUS protocol in the RTU mode (option),
- updating of software through interface RS485,
- conversion of the measured value into a standard - programmable current or voltage signal (option),
- highlighting of any measuring unit acc. to the order,
- galvanic separation between terminals: alarm, supply, input, analog output, pulse output, RS-485 interface.
The switching of the alarm output on, is signaled by the highlighting of the output number.
The casing protection grade from the frontal side is IP 65.
Meter overall dimensions: $96 \times 48 \times 93 \mathrm{~mm}$ (with terminals).
The meter casing is made of plastics.

Fig. 1 View of the N30P digital meter

2. METER SET

The set is composed of:

- N30P meter .. 1 pc
- User's manual 1 pc
- Guarantee card................................... 1 pc
- Clamps to fix in the panel 4 pcs
- Seal ... 1 pc

When unpacking the meter, please check whether the type and execution code on the data plate correspond to the order.

3. BASIC REQUIREMENTS, OPERATIONAL SAFETY

In the safety service scope, the meter meets the requirements of the EN 61010-1 standard.

Observations concerning the operational safety

- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- The programming of N30P meter parameters must be carried out after disconnecting measuring circuits
- Before switching the meter on, one must check the correctness of connections to the network.
- Do not connect the meter to the network through an autotransformer.
- Before removing the meter housing, one must switch the supply off and disconnect measuring circuits.
- The removal of the meter housing during the guarantee contract period may cause its cancellation.
- The meter fulfills requirements related to electromagnetic compatibility in the industrial environment
- When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the building. This switch should be located near the device, easy accessible by the operator, and suitably marked as an element switching the meter off.
- Non-authorized removal of the housing, inappropriate use, incorrect installation or operation, creates the risk of injury to personnel or meter damage. For more detailed information, please study the User's Manual.

4. INSTALLATION

The meter has separable strips with screw terminals which enable the connection of external wires of $2.5 \mathrm{~mm}^{2}$ cross-section. In execution for current measurement, the plug enables a permanent fixing to the socket by means of screws.
The meter is adapted to be mounted in a panel by means of clamps, acc. to the fig. 2. One must prepare a hole of $92+0.6 \times 45+0.6 \mathrm{~mm}$ in the panel which the thickness should not exceed 15 mm .
The meter must be introduced from the panel front with disconnected supply voltage. Before the insertion into the panel, one must check the correct placement of the seal. After the insertion into the hole, fix the meter by means of clamps (fig.2).

Fig. 2. Meter fixing

Fig. 3. Overall dimensions

4.1. Connection Diagrams

Additional output signals (option)

Fig. 4. Electrical connections of the N30P meter for direct measurements

Fig. 5. Electrical connections of the N30P meter for indirect measurements

5. SERVICE

5.1. Display Description

Fig. 6. Description of the meter frontal plate

5.2. Messages after switching the supply on

After switching the switching supply on, the meter displays the meter name N30P and next the program version in the shape „r x.xx" - where $x . x x$ is the number of the current program version or the number of a custom-made execution. Next the meter carries out measurements and displays the value of the input signal. The meter sets automatically the decimal point position when displaying the value, using prefixes k - kilo, M - mega. The overflow of alarm thresholds is signaled by highlighting alarm indexes 1, 2, 3, 4 and switching relays (for alarm 3 and 4 -relays are as option). The meter highlights automatically the unit of the measured value. In case of an error occurrence or any exceeding of the range value, a message described in the chapter 7 will be displayed on the display.

5.3. Functions of buttons

\longleftarrow - Acceptation button:
\Rightarrow entry in programming mode (hold down ca 3 secondes) (przytrzymanie przez około 3 sekund),
\Rightarrow moving through the menu - choice of level,
\Rightarrow moving through the menu monitoring the measured values,
\Rightarrow entry in the mode changing the parameter value,
\Rightarrow acceptation of the changed parameter value.
Δ - Button increasing the value:
\Rightarrow display of maximal value,
\Rightarrow display of maximal value - menu monitoring the measured parameters,
\Rightarrow entry in the level of the parameter group,
\Rightarrow moving through the chosen level,
\Rightarrow change of the chosen parameter value - increasing the value.
\triangleleft - Button to change the digit:
\Rightarrow display of minimal value,
\Rightarrow display of minimal value - menu monitoring the measured parameters,
\Rightarrow entry in the level of parameter group,
\Rightarrow moving through the chosen level,
\Rightarrow change of chosen parameter value - shift on the next digit,
\Rightarrow next parameter in the monitoring mode of meter parameters.

区- - resignation button:
\Rightarrow entry in the menu monitoring the meter parameters (holding down ca 3 seconds),
\Rightarrow exit from the menu monitoring meter parameters and measured values,
\Rightarrow resignation of the parameter change,
\Rightarrow absolute exit from the programming mode.
The pressure of the button combination $\vec{A} \leadsto$ and holding down them ca 3 seconds causes the reset of alarm signaling. This operation acts only when the support function is switched on.
The pressure of the button combination $\square \bar{d}$ erasing of all minimal values.
The pressure of the button combination $\overline{\mathrm{E}} \Delta \triangle$ causes the erasing of all maximal values.
The pressure and holding down the \longleftarrow button ca 3 seconds causes the entry to the programming matrix. The programming matrix is protected by the safety code.
The pressure and holding down the batton 3 seconds causes the entry to the menu monitoring meter parameters. One must move through the monitoring menu by means of \checkmark and Δ buttons. In this menu all programmable meter parameters are only accessible for readout, excepting service parameters. The exit for the monitoring menu is carried out by means of the ber button. In the monitoring menu, parameter symbols are displayed alternately with their values.
The service algorithm of the meter is presented on the fig. 7.
The pressure and holding down \checkmark and \triangle buttons, ca 3 seconds, causes the entry to the menu monitoring measured values. One must move through the monitoring menu by means of $\backsim \square \square$ and \triangle buttons.
The pressure of the \longleftarrow button causes the display of successive symbol of measured value alternately with the value. The pressure of the \checkmark button causes the display of minimal value of the currently displayed value, however the pressure of the \triangle button causes the display of the maximal value of the currently displayed value.
The exit from the monitoring menu is carried out by means of the屚 button.

In case of capacitive load when the reactive power is displayed a symbol (\ddagger) showing type of load is highlighted. Individual measurements

of averaged values are performed, respectively: the averaged power every 15 seconds, the averaged voltage every 5 seconds and the averaged frequency every second. In case of averaged power, at selected $15 \mathrm{~min}, 30 \mathrm{~min}, 60 \mathrm{~min}$ respectively 60, 120 or 240 measurements are avereged.

When you start the meter or erasing power, the first everaged value of active power will be calculated after 15 seconds after the meter switching on or deletions. Until the samples are gathered, average values are calculated from samples already measured.

5.4. Programming

The pressure of the button and holding it down through ca 3 seconds causes the entry to the programming matrix. If the entry is protected by a password, then the safety code symbol SEC is displayed alternately with the set value $\mathbf{0}$. The write of the correct code causes the display of the ErCod inscription. The matrix of transitions to the programming mode is presented on the fig. 8. The choice of the level is made by means of the button \leftrightarrows, however the entry and moving through the parameters of the chosen level is carried out by means of the \triangle and \triangle buttons,
Parameter symbols are displayed alternately with their current values. In order to change values, one must use the \checkmark button. To resign fo the parameter change, one must press the bed button. In order to exit from the chosen level, one must chose the ----- symbol and press the \leadsto buton or press the button $\sqrt{\text { ब }}$. To exit from the programming matrix, one must press several times the B button till the appearance of the inscription End and after ca 3 seconds, the meter enters automatically in the measurement of the input quantity.

$\begin{gathered} \text { Pos. } \\ \text { no } \\ 1 \end{gathered}$	InPUt Input parameters	tYP Type displayed quantity	SYn Type of input synchronization	rAnU Voltage input range	rAnl Current input range	trU Voltage ratio	trl Current ratio	PAvs Synchr. of averaged power	-----	
2	diSP Display parameters	dP Minimal decimal point		CoLbE Middle colour	CoLUP Upper colour	CoLLo Lower thres -hold of colour change	CoLHI Upper thres -hold of colour change	ovrLo Lower owerflow	ovrHi Upper owerflow	-----
3	ALr1 Alarm 1	P_A1 Type of input quantity for alarm 1	PrL_1 Lower threshold	PrH_1 Upper threshold	tYP_1 Alarm type	dLY_1 Alarm delay	LEd_1 Signal support.	-----		
4	ALr2 Alarm 2	P_A2 Type of input quantity for alarm 2	PrL_2 Lower threshold	PrH_2 Upper threshold	tYP_2 Alarm type	dLY_2 Alarm delay	LEd_2 Signal support.	-----		
5	ALr3 Alarm 3	P_A3 Type of input quantity for alarm 3	PrL_3 Lower threshold	PrH_3 Upper threshold	tYP_3 Alarm type	dLY_3 Alarm delay	LEd_3 Signal support.	-----	* Do not executi	occur in the ion without
6	ALr4 Alarm 4	P_A4 Type of input quantity for alarm 4	PrL_4 Lower threshold	PrH_4 Upper threshold	tYP_4 Alarm type	dLY_4 Alarm delay	LEd_4 Signal support.	-----	additio plate.	al output
7	$\text { oUt }{ }^{*}$ Output	P_An Type of input for analog output	An_Lo Lower threshold for analog output	An_HI Upper threshold for analog output	tYP_A Kind of output (volt/curr.)	bAUd Baud rate	Prot Kind of transmission	Addr Device address	-----	
8	SEr Service	SEt Write of standard parameters	SEC Password introduction	HoUr Time setting	Unit Highlight the unit	C_EnP Reset active energy watt-hout meter	C_Enq Reset reactive energy watt-hout meter	$\begin{gathered} \text { C_PAv } \\ \text { Begin the syn- } \\ \text { chronization } \\ \text { of averaged } \\ \text { power } \end{gathered}$	C_UAv Begin the synchronization of 10 minutes' voltage	$\begin{gathered} \mathbf{t E S t} \\ \text { Display } \\ \text { test } \end{gathered}$

Fig. 8. Transition matrix in the programming mode

Value Change Way of the Chosen Parameter

Change of Integral Values

In order to increase the value of the chosen parameter, one must press the Δ buton. The single pressure of the button, causes the increase of the value of 1 . The holding down of the \triangle button causes a continuous increase of the value on the given digit. The increase of value when displaying the digit 9 causes the setting of 0 on this digit. The change of the digit follows after pressing the \checkmark button. In order to accept the set parameter, one must hold down the button. Then, the saving of the parameter follows and the display of its symbol alternately with the new value. The pressure of the 屈 button during the change of the parameter value will cause the resignation of the write.

Changing of Values

The change is carried out in three stages (the transition to the next stage follows after pressing the $\longleftarrow \square$ button:

1) setting the value from the range -19999M...99999M, similarly as for integral values;
2) setting of the decimal point position (00000., 0000.0, 000.00, $00.000,0.0000$); the \checkmark button shifts the decimal point to the left, however the \triangle button shifts the decimal point to the right;
3) choice of the prefix: lack, k, M; the Δ button switches the next prefix; the chosen prefix is displayed in orange.
The pressure of the button during the change of the parameter value will cause the resignation of the saving.

Table 1

Parameter symbol	Description	Range of changes
tYP	Choice of the displayed quantity	U-RMS voltage I-RMS current P - active power q - reactive power S - apparent power PF - factor of active power tG - ratio of reactive power to the active power FI - phase shift FrEq - frequency EPPoS - active energy input EPneg - active energy output EqPoS - reactive energy input Eqneg - reactive energy output PAv - mean active power UAv-10 minutes' mean voltage FAv - 10 seconds' mean frequency HoUr - current time
SYn	Type of input synchronization	\mathbf{U} - synchronization with voltage (measurement of all values) I - synchronization with current (only measurement of current and frequency)
rAnU	Choice of voltage range	$\begin{aligned} & 100 \mathrm{U} \text { - range } 100 \mathrm{~V} \\ & \mathbf{4 0 0 U} \text { - range } 400 \mathrm{~V} \end{aligned}$
rAnl	Choice of current range	1A - range 1 A 5A - range 5 A
trU	Choice of voltage ratio	1... 4000.0
trl	Choice of current ratio	1... 10000
PAv S	Synchronization of averaged active power	15-15 minutes walking window c_15 - measurement every 15 minutes synchronized with the clock c_30 - measurement every 30 minutes synchronized with the clock c_15 - measurement every 60 minutes synchronized with the clock

dp	Minimal position of the decimal point when displaying the measured value.	$\begin{gathered} 0.0000 \\ 00.000 \\ 000.00 \\ 0000.0 \\ 00000 \\ \text { k } 000.00 \\ \text { k } 0000.0 \\ \text { k } 00000 \\ \text { M } 000.00 \\ \text { M } 0000.0 \\ \text { M } 00000 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	0 1 2 3 4 5 6 7 8 9 10
CoLdo	Display colour when the displayed value is less than CoLLo	rEd - red GrEEn - green orAnG - yellow		
CoLbE	Display colour when the displayed value is higher than CoLLo and less than CoLHI			
CoLUP	Display colour when the displayed value is higher than CoLHI			
CoLLo	Lower threshold of display colour change	-19999M ... 99999M		
CoLHI	Upper threshold of display colour change	-19999M ... 99999M		
ovrLo	Lower threshold of the display constraint \square	-19999M ... 99999M		
ovrHI	Upper threshold of the display constraint	-19999M ... 99999M		

$\begin{aligned} & P _A 1 \\ & P _A 2 \\ & P _A 3 \\ & P _A 4 \end{aligned}$	Kind of input value type, which the alarm has to react on.	U-RMS voltage I - RMS current \mathbf{P} - active power q - reactive power S - apparent power PF - active power factor tG - ratio of reactive power to active power FI - phase shift FrEq - frequency EPPoS - active energy input EPnEG - active energy output EqPoS - reactive energy input EqnEG - reactive energy output PAv - 15 minutes' mean active power UAv - 10 minutes' mean voltage FAv - 10 seconds' mean frequency.
PrL 1 PrL 2 PrL 3 PrL 4	Lower alarm threshold.	-19999M ... 99999M
PrH 1 PrH 2 PrH 3 PrH 4	Upper alarm threshold.	-19999M ... 99999M
tYP 1 tYP 2 tYP 3 tYP 4	Alarm type. The fig. 9. presents a graphic display of alarm types.	n-on - normal (transition from 0 to 1), n-oFF - normal (transition from 1 to 0), on - switched on, oFF - switched off, H-on - manually switched on; till the time of alarm type change, the alarm output remains switched on for good. H-oFF - Manually switched off; till the time of alarm type change, the alarm output remains switched off for good.
dLY_1 dLY_2 dLY_3 dLY_4	Delay of alarm switching.	0...900 seconds

LEd_1 LEd_2 LEd_3 LEd_4	Supporting of alarm signaling. In the situation when the support function is switched on after the alarm state retreat, the signaling diode is not put out. It signals the alarm state till the moment of its extinction by means of the \square药 \square button combination. The function concerns only and exclusively the alarm signaling, that is the relay contacts will operate without support in compliance with the chosen alarm type.	on - support switched on oFF - support switched off
P_An	Kind of input value type, which the analog output has to react on.	\mathbf{U} - RMS voltage I - RMS current \mathbf{P} - active power q - reactive power S - apparent power PF - active power factor tG - ratio of reactive power to active power FI - phase shift FrEq - frequency EPPoS - active energy input EPnEG - active energy output EqPoS - reactive energy input EqnEG - reactive energy output PAv - mean active power UAv - 10 minutes' mean voltage FAv - 10 seconds' mean frequency.
An_Lo	Lower threshold of the analog output. One must give the value for which we want to obtain 0 on the analog output.	-19999M ... 99999M
An_HI	Upper threshold of the analog output. One must give the value for which we want to obtain the maximal signal on the analog output (20 mA or 10 V).	-19999M ... 99999M
tYPA	Type of the analog output	$\mathbf{0} _\mathbf{1 0 U}$ - voltage $0 \ldots 10 \mathrm{~V}$ $\mathbf{0 _ 2 0 A}$ - current $0 \ldots 20 \mathrm{~mA}$ $\mathbf{4 _ 2 0 A}$ - current $4 \ldots 20 \mathrm{~mA}$

bAUd	Baud rate of the RS-485 interface transmission.	$\begin{array}{r} \mathbf{4 8 0 0} \text { - } \quad 4800 \mathrm{bit} / \mathrm{s} \\ \mathbf{9 6 0 0}-\quad 9600 \mathrm{bit} / \mathrm{s} \\ \mathbf{1 9 2 0 0}-19200 \mathrm{bit} / \mathrm{s} \\ \mathbf{3 8 4 0 0}-38400 \mathrm{bit} / \mathrm{s} \end{array}$
Prot	Kind of transmission through the RS-485 interface.	r8n2 - RTU 8N2 r8E1 - RTU 8E1 r8o1 - RTU 8O1 r8n1 - RTU 8N1
Addr	Device address	1... 247
SEt	Write of manufacturer settings. Parameter values set by the manufacturer are presented in the table 2.	The setting of the value YES causes the saving of standard parameters in the meter.
SEC	Introduction of a new password.	0... 60000
HoUr	Setting of the current time.	0,00...23,59 The introduction of an erroneous time causes at the acceptation, the setting 23 , however the introduction of erroneous minutes will cause the setting of the value 59.
UnIt	Selection of measured value for which the unit is highlighted.	U-RMS voltage I - RMS current \mathbf{P} - active power q - reactive power S - apparent power PF - active power factor tG - ratio of reactive power to active power FI - phase shift FrEq - frequency EPPoS - active energy input EPnEG - active energy output EqPoS - reactive energy input EqnEG - reactive energy output PAv - mean active power UAv - 10 minutes' mean voltage FAv - 10 seconds' mean frequency.
C_EnP	Reset of active watt-hour meters	The choice YES causes the reset of active watt-hour meters

C_Enq	Reset of reactive watt-hour meters	The choice YES causes the reset of reactive watt-hour meters.
C_PAv	Synchronization of 15 minutes' mean active power	The choice YES causes the beginning of 15 minutes' mean active power measurement.
C_UAv	Synchronization of 10 minutes' mean voltage	The choice YES causes the beginning of 10 minutes' mean voltage measurement.
tESt	Display test. The test consist on the successive lighting up of digital display segments. Alarm diodes and highlighting diodes should be lighted.	The choice YES causes the switching of the test on. The pressure of the \square button ends the test.
-----	Exit from the parameter group of the chosen level.	The pressure of the \square button causes the exit from the parameter group of the chosen level.

a) n-on

b) n-off

d) off

Fig. 9. Alarm types: a) n-on, b) n-oFF c) on d) oFF.
Remaining types of alarms: h-on - always switched on; h-oFF - always switched off.

Caution!

- In case of alarms of \mathbf{n}-on, \mathbf{n}-oFF, on, oFF types the
 write of PrL>PrH will cause the alarm switching off.
- In case of a measuring range overflow, the reaction of the n-th relay is compatible with written PrL_n, PrH_n, tYP_n parameters. In spite of the displayed overflow, the meter still carries out the measurement.
- The meter controls currently the value of the introduced parameter at the moment. In case when the introduced value overflows the upper range given in the table 1, the meter will make automatically the change into the maximal value. Similarly, in case when the introduced value overflows the lower change range given in the table 1, the meter will make automatically the change into the minimal value.

5.5. Manufacturer's Parameters

Table 2

Parameter symbol	Level in the matrix	Standard value
tYP	1	P
SYn	1	U
rAnU	1	400 U
rAnl	1	5 A
trU	1	1,0
trl	1	1
PAv S	1	15
dP	2	GrEEn
CoLdo	2	orAnG
CoLbE	2	rEd
CoLUP	2	920
CoLLo	2	1150
CoLHI	2	$99999 M$
ovrLo	2	$0000(0)$

ovrHI	2	-19999M
P_A 1	3	P
PrL_1	3	920
PrH_1	3	1150
tYP_1,	3	n-on
P_A 2	4	I
PrL_2	4	4.000
PrH_2	4	5.000
tYP_2,	4	n-on
P_A3	5	U
PrL_3	5	200.00
PrH_3	5	250.00
tYP_3,	5	oFF
P_A 4	6	PF
PrL_4	6	0.800
PrH_4	6	0.999
tYP_4	6	oFF
$\begin{aligned} & \text { dLY_1, dLY_2, } \\ & \text { dLY_3, dLY_4 } \end{aligned}$	3,4,5,6	0
LEd_1, LEd_2, LEd_3, LEd_4	3,4,5,6	off
P_An	7	I
tYP_A	7	0... 20 mA
An_Lo	7	0.000
An_HI	7	5.000
bAUd	7	9600
Prot	7	r8n2
Addr	7	1
SEC	8	0
HoUr	8	0.00
Unit	8	P

6. INTERFACE RS-485

N3OP programmable digital meters have serial links in RS-485 standards for the communication in computer systems and with other devices fulfilling Master function. An asynchronous communication character protocol MODBUS has been implemented on the serial link. The transmission protocol describes ways of information interchange between devices through the serial link.

6.1. Connection Way of the Serial Interface

The RS-485 standard allows to a direct communication of 32 devices on a single serial link of 1200 m long. For the connection of a higher quantity of devices, it is necessary to apply additional intermediateseparating systems.
The leading of the interface line out is given in the meter user's manual. To obtain a correct transmission, it is necessary to connect lines A and B with their equivalent in other devices. The connection must be made through a shielded wire. The shield must be connected to the protection terminal in a single point. The GND line serves to the additional protection of the interface line at long connections. One must connect it to the pro-

Fig. 10. Connection way of the RS-485 interface
tection terminal (it is not necessary for a correct interface work).
To obtain the connection with a computer of IBM PC class, a RS-485 card or a RS-232/RS-485 converter is indispensable.
The connection way of devices is shown on the fig. 10
The designation of transmission lines for the card in the PC komputer depends on the card producer.

6.2. Description of the MODBUS Protocol Implementation.

The implemented protocol is in accordance with the PI-MBUS-300 Rev G of Modicon Company specification.
Set of the serial link parameters of meters in MODBUS protocol:

- meter address
- baud rate
- work modes
- information unit
- maximal response time
1...247,

4800, 9600, 19200, $38400 \mathrm{bit} / \mathrm{s}$,
RTU,
RTU: 8N2, 8E1, 8O1, 8N1, 1000 ms

- The maximum number of read records in one query: - 60 registers -4 bytes,
- 120 registers - 2 bytes.

Parameter configuration of the serial link is described in the further part of the user's manual. It consists on the settlement of the baud rate (bAUd parametr), device address (Addr parameter), and the type of the configuration unit (Mode parameter)

Notice:

Each meter connected to the communication network must have :

- unique address, different from addresses of other devices connected to the network,
- identical baud rate and type of information unit.

Following functions of the MODBUS protocol hale been implemented in the N30P meter:

Table 3

Code	Meaning
03	Readout of n-registers
04	Readout of single register
06	Write of single register
16	Write of n-registers
17	Identification of the slave device.

6.3. Register Map of the N30P Meter

Table 4

Range of addresses	Value type	Description
$4000-4100$	integer (16 bits)	Value placed in a 16-bit register.
6000-6113	float (32 bits)	Value placed in two successive 16-bit registers. Registers include the same data as 32-bit reg- ister from the area 7500. Registers are only for readout. The byte order (1-0-3-2)
6200-6227	float (32 bits)	Value placed in two successive 16-bit registers. Registers include the same data as 32-bit reg- ister from the area 7600. Registers can be read out and written. The byte order (1-0-3-2)
$7000-7113$	float (32 bits)	Value placed in two successive 16-bit registers. Registers include the same data as 32-bit reg- ister from the area 7500. Registers are only for readout. The byte order (3-2-1-0).
$7200-7227$	float (32 bits)	Value placed in two successive 16-bit registers. Registers include the same data as 32-bit reg- ister from the area 760. Registers can be read out and written. The byte order (3-2-1-0).
$7500-7556$	float (32 bits)	Value placed in a 32-bit register. Registers are only for readout.
$7600-7613$	float (32 bits)	Value placed in a 32-bit register. Registers can be read out and written.

6.4. Registers for Write and Readout

4011	CoLbE	w/r	0... 2	Display colour when the displayed value is higher than in the register 7600 and less than in register 7601.	
				Value	
				0	red
				1	green
				2	orange
4012	CoLuP	w/r	0... 2	Display colour when the displayed value is higher than in the register 7601	
				Value	
				0	red
				1	green
				2	orange
4013	P_A1	w/r	0... 15	Kind of the input quantity type on which the alarm 1 has to react.	
Value					
				0	RMS voltage
				1	RMS current
				2	Active power
				3	Reactive power
				4	Apparent power
				5	Active power factor
				6	Ratio of reactive/active power
				7	Phase shift
				8	Frequency
				9	Input of active energy
				10	Output of active energy
				11	Input of reactive energy
				12	Output of reactive energy
				13	15 minutes' mean active power
				14	10 minutes' mean voltage
				15	10 secondes' mean frequency

4018	tYP_2	w/r	0... 5	Type of alarm 2 (description - fig. 6)	
				Value	
				0	n-on
				1	n-oFF
				2	on
				3	oFF
				4	H -on
				5	H-oFF
4019	dLY_2	w/r	0... 120	Delay of alarm 2 (in seconds)	
4020	LEd_2	w/r	0... 1	Support of alarm 2 signaling	
Value					
				0	Support switched off
				1	Support switched on
4021	P_A3	w/r	0... 15	Kind of the input quantity type on which the alarm 3 has to react.	
				Value	
				0	RMS voltage
				1	RMS current
				2	Active power
				3	Reactive power
				4	Apparent power
				5	Active power factor
				6	Ratio of reactive/active power
				7	Phase shift
				8	Frequency
				9	Input of active energy
				10	Output of active energy
				11	Input of reactive energy
				12	Output of reactive energy
				13	15 minutes' mean active power
				14	10 minutes' mean voltage
				15	10 seconds' mean frequency

4022	tYP_3	w/r	0... 5	Type of alarmu 3 (description - fig. 6)	
				Value	
				0	n -on
				1	n-oFF
				2	on
				3	oFF
				4	H -on
				5	H-oFF
4023	dLY_3	w/r	0... 120	Delay of alarm 3 (in seconds)	
4024	LEd_3	w/r	0... 1	Support of alarm 3 signaling	
				Value	
				0	Support switched off
				1	Suport switched on
4025	P_A4	w/r	0... 15	Kind of the input quantity type on which the alarm 4 has to react.	
				Value	
				0	RMS voltage
				1	RMS current
				2	Active power
				3	Reactive power
				4	Apparent power
				5	Active power factor
				6	Ratio of reactive/active power
				7	Phase shift
				8	Frequency
				9	Input of active energy
				10	Output of active energy
				11	Input of reactive energy
				12	Output of reactive energy
				13	Mean active power
				14	10 minutes' mean voltage
				15	10 seconds' mean frequency

4026	tYP_4	w/r	0... 5	Type of alarm 4 (description - fig. 6)	
				Value	
				0	n -on
				1	n-oFF
				2	on
				3	oFF
				4	H -on
				5	H-oFF
4027	dLY_4	w/r	0... 120	Delay of alarm 4 (in seconds)	
4028	LEd_4	w/r	0... 1	Support of alarm 4 signaling	
Value					
				0	Support switched off
				1	Support switched on
4029	P_An	w/r	0... 15	Kind of the input quantity type on which the analog output has to react.	
				Value	
				0	RMS voltage
				1	RMS current
				2	Active power
				3	Reactive power
				4	Apparent power
				5	Active power factor
				6	Ratio of reactive/active power
				7	Phase shift
				8	Frequency
				9	Input of active energy
				10	Output of active energy
				11	Input of reactive energy
				12	Output of reactive energy
				13	Mean active power
				14	10 minutes' mean voltage
				15	10 seconds' mean frequency

4030	tYP_A	w/r	0... 2	Type of analog output	
				Value	
				0	Voltage 0... 10 V
				1	Current 0... 20 mA
				2	Current 4... 20 mA
4031	bAUd	w/r	0... 3	Baud rate	
				Value	
				0	$4800 \mathrm{bit} / \mathrm{s}$
				1	$9600 \mathrm{bit/s}$
				2	$19200 \mathrm{bit} / \mathrm{s}$
				3	$38400 \mathrm{bit} / \mathrm{s}$
4032	Prot	w/r	0... 3	Baud rate	
				Value	
				0	RTU 8N2
				1	RTU 8E1
				2	RTU 801
				3	RTU 8N1
4033	Addr	w/r	0... 247	Device address	
4034	sAvE	w/r	0... 1	Update display parameters	
				Value	
				0	without changes
				1	update
4035	SEt	w/r	0... 1	Write of standard parameters	
				Value	
				0	without changes
				1	set standard parameters
4036	SEC	w/r	0...60000	Password for parameters	
				Value	
				0	without password
				1...60000	entry in parameters preceded by a request about the password
4037	HoUr	w/r	0... 2359	Current time	
				This parameter occurs in the ggmm format, where: gg - means hours, mm - means minutek. The introduction o a wrong hour will cause the setting 23, however the introduction of wrong minutes will generate the setting 59 .	

4038	Unit	w/r	0... 16	Switch on and off the unit display	
Value					
				0	RMS voltage
				1	RMS current
				2	Active power
				3	Reactive power
				4	Apparent power
				5	Active power factor
				6	Ratio of reactive/active power
				7	Phase shift
				8	Frequency
				9	active energy
				10	reactive energy
				11	apparent energy
				12	Output of reactive energy
				13	Mean active power
				14	10 minutes' mean voltage
				15	10 secondes' mean frequency
				16	Current time
				17	Switched off for good.
				The unit 4000 i	displayed when the value In the register qual to the value In the register 4038
4039	C_EnP	w/r	0... 1		Reset of active watt-hour meters
				Value	
				0	Lack of operation
				1	Reset of active watt-hour meters
4040	C_Enq	w/r	0... 1		Reset of reactive watt-hour meters
				Value	
				0	Lack of operation
				1	Reset of reactive watt-hour meters
4041	C_PAv	w/r	0... 1		Synchronization of mean power
				Value	
				0	Lack of operation
				1	Beginning of the mean power synchronization

4042	C_UAv	w/r	0... 1	Synchronization of the 10 minutes' mean voltage	
				Value	
				0	Lack of operation
				1	Beginning of the 10 minutes' mean voltage synchronization
4043	LI_0	w/r	0... 1	Erasing of minimum and maximum	
				Value	
				0	Lack of operation
				1	Erasing of minimum and maximum
4044	StAt	r	0... 65536	Status register (description below)	
4045	StAt2	r	0... 65536	Status register 2 (description below)	
4046		r	0... 65536	Serial number: two odler bytes	
4047		r	0... 65536	Serial number: two younger bytes	
4048		r	0... 65536	Program version (*100)	
4049		r	0... 65536	reserved	
4050		r	0... 15258	Input active energy, two older bytes	
4051		r	0... 65536	Input active energy, two younger bytes	
4052		r	0... 15258	Output active energy, two older bytes	
4053		r	0...65536	Output active energy, two younger bytes	
4054		r	0... 15258	Inductive reactive energy, two older bytes	
4055		r	0... 65536	Inductive reactive energy, two younger bytes	
4056		r	0... 15258	Capacitive reactive energy, two older bytes	
4057		r	0... 65536	Capacitive reactive energy, two younger bytes	

Status register (address 4044, R):

$$
!\text { ! ' (!! }) 6
$$

Bit-11, bit 10 analog output

F $\stackrel{\text { \% }}{\text { \% }}$	앛 $\stackrel{ \pm}{\circ}$	Meaning
0	0	voltage output 0... 10 V
0	1	current output 0... 20 mA
1	0	current output 4... 20 mA
1	1	lack of calibration of analog output

Bit-9-,,1" - the interval of frequency averaging does not elapse

Bit-8 - ,,1"- the interval of voltage averaging does not elapse

Bit-7-,1"- the interval of active power averaging does not elapse

Bit-6 - „1"- too small voltage,current for power factor measurement, $\operatorname{tg}(\mathrm{fi}), \mathrm{fi}$

Bit-5 - „1" - exceeded the upper range

Bit-4 - ,,1" - exceeded the lower range

Bit-3- „1" - alarm 4 switching (relay)

Bit-2 - „1" - alarm 3 switching (relay)

Bit-1- „,1" - alarm 2 switching (relay)

Bit-0- „1" - alarm 1 switching (relay)

Status 2 register - nature of reactive power (address 4045, R):
Bit-15 - negative active energy difference (register 7518)
Bit-14... 3 - reserved
Bit-2 - „1" - capacitive reactive power maximum
Bit-1-„1" - capacitive reactive power minimum
Bit-0 - „1" - capacitive reactive power

		Symbol		Range	Description
6200/7200	7600	CoLLo	w/r	-19999M...99999M	Lower threshold of the display colour change
6202/7202	7601	CoLHI	w/r	-19999M...99999M	Upper threshold of the display colour change
6204/7204	7602	ovrLo	w/r	-19999M...99999M	Lower threshold of the display narrowing
6206/7206	7603	ovrHI	w/r	-19999M...99999M	Upper threshold of the display narrowing
6208/7208	7604	PrL_1	w/r	-19999M...99999M	Lower threshold of alarm 1 (Aoff)
6210/7210	7605	PrH_1	w/r	-19999M...99999M	Upper threshold of alarm 1 (Aon)
6212/7212	7606	PrL_2	w/r	-19999M...99999M	Lower threshold of alarm 2 (Aoff)
6214/7214	7607	PrH_2	w/r	-19999M...99999M	Upper threshold of alarm 2 (Aon)
6216/7216	7608	PrL_3	w/r	-19999M...99999M	Lower threshold of alarm 3 (Aoff)
6218/7218	7609	PrH_3	w/r	-19999M...99999M	Upper threshold of alarm 3 (Aon)
6220/7220	7610	PrL_4	w/r	-19999M...99999M	Lower threshold of alarm 4 (Aoff)
6222/7222	7611	PrH_4	w/r	-19999M...99999M	Upper threshold of alarm 4 (Aon)
6224/7224	7612	An_Lo	w/r	-19999M...99999M	Lower threshold of analog output
6226/7226	7613	An_HI	w/r	-19999M...99999M	Upper threshold of analog output

6.5. Registers only for Readout

Table 7

		Name		Unit	Name of the quantity
6000/7000	7500	Identifier	r	-	Constant identifying the device
					179 (0xB3) - N30P
6002/7002	7501	Status	r	-	Status is register describing the current state of the meter (the same value as in register 4044)
6004/7004	7502	Control	r	\%	It is a register defining the control of the analog output
6006/7006	7503	Minimum	r	-	Minimal value of the currently displayed value
6008/7008	7504	Maksimum	r	-	Maximal value of the currently displayed value
6010/7010	7505	Displayed Value	r	-	Currently displayed value
6012/7012	7506	Reserved			
6014/7014	7507	Reserved			
6016/7016	7508	Reserved			
6018/7018	7509	U	r	V	RMS voltage
6020/7020	7510	1	r	A	RMS current
6022/7022	7511	P	r	W	Active power

6024/7024	7512	Q	r	var	Reactive power
6026/7026	7513	S	r	VA	Apparent power
6028/7028	7514	PF	r		Active power factor
6030/7030	7515	tG	r		Ratio of reactive/active power
6032/7032	7516	FI	r	。	Phase shift
6034/7034	7517	FrEq	r	Hz	Frequency
6036/7036	7518	The absolute value of the difference of the active energy: the absorbed active energy - the given back active energy			
6038/7038	7519	Sum of the passive energy: the inductive passive energy + the capacitive passive energy			
6040/7040	7520	Reserved			
6042/7042	7521	PAv	r	W	15 minutes' mean power
6044/7044	7522	UAv	r	V	10 minutes' mean voltage
6046/7046	7523	FAv	r	Hz	10 seconds' mean frequency
6048/7048	7524	HoUr	r	gg,mm	Current time
6050/7050	7525	U_min	r	V	Minimal value of RMS voltage
6052/7052	7526	U_max	r	V	Maximal value of RMS voltage
6054/7054	7527	I_min	r	A	Minimal value of RMS current
6056/7056	7528	I_max	r	A	Maximal value of RMS current
6058/7058	7529	P_min	r	W	Minimal value of active power
6060/7060	7530	P_max	r	W	Maximal value of active power
6062/7062	7531	Q_min	r	var	Minimal value of reactive power
6064/7064	7532	Q_max	r	var	Maximal value of reactive power
6066/7066	7533	S_min	r	VA	Minimal value of apparent power
6068/7068	7534	S_max	r	VA	Maximal value of apparent power
6070/7070	7535	PF_min	r		Minimal value of active power factor
6072/7072	7536	PF_max	r		Maximal value of active power factor
6074/7074	7537	tG_min	r		Minimal value of reactive/active power ratio

$6076 / 7076$	7538	tG_max	r		Maximal value of reactive/active power ratio						
$6078 / 7078$	7539	FI_min	r	\circ	Minimal value of phase shift	$	$	$6080 / 7080$	7540	FI_max	r
:---	:---:	:---:	:---:								

7. ERROR CODES

After switching the meter to the network, messages about errors can appear. Reasons about errors are presented below.
The appearance of below mentionned symbols on digital displays means:

Overflow of upper value of programmed indication range.

Overflow of lower value of programmed indication range.

ErCAL Loss of meter calibration values. One must contact the service workshop.

EroUt Loss of calibration values of meter analog outputs. The pressure of the ESC button switches the message off, analog outputs remain switched off. One must contact the service shop.

Er EE Innapropriate values in meter configurating data. The pressure of the ESC button switched the message off. One must set meter parameters again.
ErEnr $\begin{aligned} & \text { Incorrect energy values in the meter. The pressure of } \\ & \text { the ESC button switched the message off. Energies } \\ & \text { are reset. }\end{aligned}$

ErCod Password incorrectly introduced.

During the meter operation, messages about errors can appear. Reasons of errors are presented below:

1) Erovr - when the voltage and/or current is too small or too high during the measurement:

$-\mathrm{Pf}_{\mathrm{i}}, \operatorname{tg} \varphi_{\mathrm{i}}, \varphi$	below $5 \% \mathrm{U}_{\mathrm{n}}, 0,5 \% \mathrm{I}_{\mathrm{n}}$
-f	below $5 \% \mathrm{U}_{\mathrm{n}}$

2) ErPAv - the full interval of the power P_Av averaging time is not going by.
3) ErUAv - the full interval of the voltage U_Av averaging time is not going by.
4) ErFAv - the full interval of the frequency F_Av averaging time is not going by.

8. UPDATING OF SOFTWARE

Function enabling updating of software from the computer of the PC with software LPCon was implementation in meter N3OP in the realization with the interface RS485. The connected to the computer convertor RS485 is required on USB to the updating, e.g.: the convertor PD10.
a)

b)

Fig. 11. Program view: a) LPCon, b) updating of software

Warning! Before doing update, currently settings of meter should be saved by program LPCon, because when software is updated default settings of meter are restored.

After starting LPCon's software COM port, baudrate, transmission mode and adress should be set. It can be done in Options. Then, N30P meter should be selected from Device. Push icon Load to read and save current settings. Open window Lumel Updater (LU) - figure 14b from Updating->Updating of devices firmware. Push Connect. Update progress is shown in Messages section. Text Port opened appear after correctly opened port. Putting meter in update's mode can be done in two ways: remote from LU (with settings from LPCon - port, baudrate, transmission mode and adress) or by turning power on while button
$\longleftarrow \quad$ pressed. AL1 led signals that device is ready for update. LU will show message „Device found" with name and current version of firmware. Using button \ldots a valid file should be selected. If the file is correct, message File opened will show. Send button should be pressed. If firmware update is successful device starts normal operation and message Done and update duration will show. Close LU and go to Restoration of manufacturer's parameters. Select checkbox and press Apply button. Next press Send button to restore previously read parameters. Current firmware version can be checked when meter is power on.

Warning! Power loss during firmware update could result permanent meter damage!

9. TECHNICAL DATA

Measuring Ranges

Table 8

Measured value	Indication range	Measuring range	Basic error
$\begin{array}{ll}\text { Current } & 1 \mathrm{~A} \\ & 5 \mathrm{~A}\end{array}$	$\begin{aligned} & 0.000 \ldots 12 \mathrm{kA} \\ & 0.000 \ldots 60 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 0.005 . .1 .200 \mathrm{~A} \mathrm{\sim} \\ & 0.025 . .6 .000 \mathrm{~A} \mathrm{\sim} \end{aligned}$	$\pm 0.2 \%$
Voltage L-N 100 V 400 V	$\begin{aligned} & 0.0 \ldots 0.48 \mathrm{MV} \\ & 0.0 \ldots 1.92 \mathrm{MV} \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \ldots .120 \mathrm{~V} \\ 20 \ldots . .480 \mathrm{~V} \\ \hline \end{array}$	$\pm 0.2 \%$
Frequency	$45.00 \ldots 100.00 \mathrm{~Hz}$	45.0...66.0... 100 Hz	$\pm 0.2 \%$
Active power	-19999... 99999 MW	-2.88 kW...1.40 W...2.88 kW	$\pm 0.5 \%$
Reactive power	-19999 Mvar...0.00 . 99999 Mvar	-2.88 kvar...1.40 var...2.88 kvar	$\pm 0.5 \%$
Apparent power	0.00...99999 MVA	1.40 VA... 2.88 kVA	$\pm 0.5 \%$
Coefficient PF	-1...0... 1	-1...0... 1	$\pm 0.5 \%$
Tangens φ_{i}	-1.2...0..1.2	-1.2...0...1.2	$\pm 1 \%$
φ	0... 359	0... 359	$\pm 1 \%$
Active energy	$0 . .9999999 .9$ kWh	0...9 999999.9 kWh	$\pm 0.5 \%$
Reactive energy	0...9999999.9 kvarh	0...9999999.9 kvarh	$\pm 0.5 \%$
Current time	0.00...23.59	0.00...23.59	$\begin{aligned} & 1 \text { second } \\ & / 24 \mathrm{~h} \end{aligned}$

Ku - voltage transformer ratio: $0.1 \ldots 4000.0$
Ki - current transformer ratio: 1... 10000

Relay outputs

Analog output (option)

- relays, voltageless NOC contacts load-carrying capacity $250 \mathrm{~V} / 0.5 \mathrm{~A}$
- relays, voltageless switched contacts load-carrying capacity $250 \mathrm{~V} / 0.5 \mathrm{~A}$ (option)
- current programmable 0/4... 20 mA load resistance $\leq 500 \Omega$
- voltage programmable $0 . . .10 \mathrm{~V}$ load resistance $\geq 500 \Omega$
- galvanically isolated
- resolution 0.01% of the range

RS485: address 1... 247
Mode: 8N2, 8E1, 8O1,8N1
Baud rate: 4.8, 9.6, 19.2, 38.4 kbit/s
Transmission protocol: Modbus RTU Maximal time to begin a response: 1000 ms

Energy pulse output (option)

output of OC type, passive of
A class acc.to EN 62053-31, supply voltage $18 \ldots 27 \mathrm{~V}$, current 10... 27 mA

Pulse constant

 of O/C type output$5000 \mathrm{imp} . / \mathrm{kWh}$, independently of Ku, Ki settings
Galvanic separation between:

- supply - measuring input
3.2 kV d.c.
- supply - analog output
- supply - pulse output
- supply - RS485 interface
- measuring input - analog output

2 kV d.c.

- measuring input - pulse output

2 kV d.c.
2 kV d.c.
3.2 kV d.c.

- measuring input - RS485 interface
- analog input - pulse output
- analog input - RS485 interface
- alarm output - other circuits
3.2 kV d.c.
3.2 kV d.c.

2 kV d.c.
2 kV d.c.
2 kV d.c.

Protection grade ensured by the casing:

- from frontal side

IP 65

- from rear side

IP 10
Weight
0.2 kg

Dimensions
$96 \times 48 \times 93 \mathrm{~mm}$

Reference Conditions and Rated Operating Conditions:

- supply voltage
$85 \ldots 253 \mathrm{~V}$ d.c or a.c $40 \ldots 400 \mathrm{~Hz}$ 20... 40 V d.c or a.c 40 ... 400 Hz
- input signal
- power factor
- ambient temperature
- storage temperature
- relative air humidity
- admissible peak factor of:
- current
- voltage
- external magnetic field
- short duration overload (5 s):
- voltage inputs
- current inputs
- work position
- minimal distance between meters
- power consumption:
- input power
$0 . . .0 .005 \ldots 1 . .1 \mathrm{I}_{\mathrm{n}} ; \underline{0.05 \ldots 1.2 \mathrm{Un}_{\mathrm{n}}}$
for current, voltage
$0 . . .0 .1 \ldots 1.2 \mathrm{I}_{\mathrm{n}} ; 0 . .0 .1 \ldots 1.2 \mathrm{U}_{\mathrm{n}}$;
for coefficients $\mathrm{Pf}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}, \varphi$
frequency $45 \ldots 66 \ldots 100 \mathrm{~Hz}$;
sinusoidal (THD $\leq 8 \%$)
-1...0... 1
$-25 \ldots . .23 \ldots+55^{\circ} \mathrm{C}$
$-30 \ldots+70^{\circ} \mathrm{C}$
25...95\% (inadmissible condensation)

2

2
0... $400 \mathrm{~A} / \mathrm{m}$

2Un (max. 1000 V)
10 In
any
1.5 cm

- supply circuit <6 VA
- in voltage/current circuit < 0.05 VA .

6 VA
Additional Errors in \% of the basic error:

- from frequency of input signals < 50%
- from ambient temperature changes $<50 \% / 10^{\circ} \mathrm{C}$

Standards Fulfilled by the Meter:

Electromagnetic Compatybility:

- noise immunity acc.to EN 61000-6-2
- noise emissions acc. to EN 61000-6-4

Safety Requirements: acc. to EN 61010-1 standard

- isolation between circuits: basic,
- installation category III,
- pollution level 2 ,
- maximal phase-to-earth working voltage:
- for the supply circuit: 300 V
- for the measuring input 600 V for analog input signals - cat. II (300 V - cat. III)
- for remaining circuit: 50 V
- altitude above sea level < 2000 m ,

Preheating Time

15 minutes

10. ORDER CODES

Table 9
DIGITAL PANEL METER N30P -
Supply:
85... 253 V a.c./d.c. 1
20... 40 V a.c./d.c. 2
Additional outputs:
lack 0
pulse output, RS485, analog outputs 1
switched-over relay outputs 2

X	X	XX	XX	U	X

Unit:
unit code number acc. to the tab. 10 XX
Version:
standard 00
custom-made* XX
Language:
English U
Acceptance tests:
without extra quality requirements 0
with an extra quality inspection certificate 1
acc. to customer's request* X

* - after agreeing with the manufacturer.

Order example:

The code: N30P - 100100 U 0 means: programmable N3OP panel digital meter, supply: $85 \ldots 253 \mathrm{~V}$ a.c., lack of additional outputs, unit "V" acc. to the table 10, standard version, English language, without extra quality requirements,

Code of the highlighted unit
Tablica 10

Code	Unit	Code	Unit
00	lack of unit	29	\%
01	V	30	\%RH
02	A	31	pH
03	mV	32	kg
04	kV	33	bar
05	mA	34	m
06	kA	35	I
07	W	36	s
08	kW	37	h
09	MW	38	m^{3}
10	var	39	obr
11	kvar	40	szt
12	Mvar	41	imp
13	VA	42	rsp
14	kVA	43	m / s
15	MVA	44	1/s
16	kWh	45	obr/min
17	MWh	46	rpm
18	kvarh	47	mm/min
19	Mvarh	48	$\mathrm{m} / \mathrm{min}$
20	kVAh	49	$1 / \mathrm{min}$
21	MVAh	50	$\mathrm{m}^{3} / \mathrm{min}$
22	Hz	51	szt/h
23	kHz	52	m/h
24	Ω	53	km/h
25	$\mathrm{k} \Omega$	54	$\mathrm{m}^{3} / \mathrm{h}$
26	${ }^{\circ} \mathrm{C}$	55	kg/h
27	${ }^{\circ} \mathrm{F}$	56	I/h
28	K	XX	on order ${ }^{1)}$

1) - After agreeing with the manufacturer

11. MAINTENANCE AND GUARANTEE

The N30P digital panel meter does not require any periodical maintenance.
In case of some incorrect operations:

1. From the Shipping Date, During the Period Given in the Annexed Guarantee Card

One should take the meter down from the installation and return it to the Manufacturer's
Quality Control Dept.
If the meter has been used in compliance with the instructions, the Manufacturer warrants to repair it free of charge.

2. After the Guarantee Period:

One should turn over the meter to repair it in a certified service workshop.
The disassembling of the casing causes the cancellation of the granted guarantee.

Our policy is one of continuous improvement and we reserve the right to make changes in design and specifications of any products as engineering advances or necessity requires and revise the above specifications without notice.

Sifam Tinsley Instrumentation Inc

3105, Creekside Village Drive, Suite 801
Kennesaw GA 30144
email - psk@sifamtinsley.com
Phone - +1 4047364903

