TWO-CHANNEL
 DIGITAL-TO-ANALOGUE METER WITH MULTICOLOUR BARGRAPHS + SERIAL INTERFACE

NA6

USER'S GUIDE

Two-channel digital-to-analogue
 meter with multicolour bargraphs + serial interface NA6

USER'S GUIDE

```CONTENTSPage
```

1. APPLICATION 5
2. SET OF THE METER 6
3. BASIC REQUIREMENTS, OPERATIONAL SAFETY 7
4. INSTALLATION 9
5. SERVICING 13
6. RS-485 INTERFACE 31
7. TECHNICAL DATA. 50
8. BEFORE A FAILURE HAS BEEN DECLARED 54
9. EXAMPLES OF NA6 METER PROGRAMMING 56
10. ORDERING PROCEDURE 59
11. MAINTENANCE AND GUARANTEE 61

$$
4
$$

1. APPLICATION

NA6 series meters with multicoloured bargraphs have an universal input destined to measure temperature, resistance, voltage from shunts, standard signals, d.c. voltage and d.c. current.

They can find application in various industrial fields, e.g. food industry, intermediate pumping stations, sewage treatment plants, chemical industry, weather stations, breweries.
They are destined for the visualisation of the measured value and evaluation of change trends of checked technological processes. They can also find application in automation systems where programmed controllers are applied.

Fig.1. View of the NA6 meter.

NA6 meters can have in option: a continuous analogue output, a relay output, open collector (OC) type outputs and an RS-485 digital output.
They are programmed by means of the keyboard and through RS-485.
NA6 meters realise following functions:

- measurement of the input quantity and displaying it on the display and the bargraphs,
- recounting of the input signal into indication on the base of the individual linear characteristic,
- arithmetical functions on channels: addition, subtraction, multiplication, division, raising to a power, extraction of roots,
- programming of colours and bargraph resolutions,
- signalling of alarm value setting exceedings,
- recording of the measured signal in programmed time segments,
- storage of maximal and minimal values,
- programming of the measurement averaging time,
- programming of the indication resolution,
- deadlock of the parameter introduction by means of a password,
- conversion of the measured quantity into a voltage or current output signal,
- service of the RS-485 interface in MODBUS protocol, both in ASCII and RTU mode.

2. SET OF THE NA6 METER

We deliver in the set:

- NA6 meter 1 pc.
- user's guide
- guarantee card
- plug with screw terminals
- holders to fix the meter in the panel
- set of stickers with units

1 pc.
1 pc.
1 or 2 pcs (depending on execution)
2 pcs
1 pc.

When unpacking the meter, please check whether the type and execution code on the data plate correspond to the order.

3. BASIC REQUIREMENTS, SAFETY INFORMATION

Symbols located in this service manual mean:

WARNING!

?
Warning of potential, hazardous situations. Especially important. One must acquaint with this before connecting the NA6 meter. The non-observance of notices marked by these symbols can occasion severe injuries of the personnel and the damage of the instrument.

CAUTION!

Designates a general useful note. If you observe it, handling of the meter is made easier. One must take note of this when the instrument is working inconsistently to the expectations.

Possible consequences if disregarded!

In the security scope the meter meets the requirements of the EEC Low-Voltage directive (EN 61010-1 issued by CENELEC).

Remarks concerning the operator safety:

1. General

- The NA6 meter is destined to be mounted on a panel.
- Non-authorized removal of the required housing, inappropriate use, incorrect installation or operation creates the risk of injury to personnel or damage to equipment. For more detailed information please see the user's guide.
- All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel and national regulations for the prevention of accidents must be observed.
- According to this basic safety information, qualified, skilled personnel are persons who are familiar with the installation, assembly, commissioning, and operation of the product and who have qualifications necessary for their occupation.

2. Transport, storage

Please observe the notes on transport, storage and appropriate handling. Observe the climatic conditions given in Technical Data.

3. Installation

- The NA6 meter must be installed according to the regulation and instructions given in this user's guide.
- Ensure proper handling and avoid mechanical stress.
- Do not bend any components and do not change any insulation distances.
- Do not touch any electronic components and contacts.
- Instruments may contain electrostatically sensitive components, which can easily be damaged by inappropriate handling.
- Do not damage or destroy any electrical components since this might endanger your health!

4. Electrical connection

- Before switching the meter on, one must check the correctness of connection to the network.
- In case of the protection terminal connection with a separate lead one must remember to connect it before the connection of the instrument to the mains.
- When working on live instruments, the applicable national regulations for the prevention of accidents must be observed.
- The electrical installation must be carried out according to the appropriate regulations (cable cross-sections, fuses, PE connection). Additional information can be obtained from the user's guide.
- The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must be observed for all CE-marked products.
- The manufacturer of the measuring system or installed devices is responsible for the compliance with the required limit values demanded by the EMC legislation.

5. Operation

- Measuring systems including NA6 meters must be equipped with protection devices according to the corresponding standard and regulations for prevention of accidents.
- After the instrument has been disconnected from the supply voltage, live components and power connections must not be touched immediately because capacitors can be charged.
- The housing and the door must be closed during operation.

6. Maintenance and servicing

Please observe the manufacturer's documentation.
Read all product-specific safety and application notes in this user's guide manual

- Before taking the meter housing out, one must turn the supply off.
- The removal of the instrument housing during the guarantee contract period may cause its cancellation.

4. INSTALLATION

4.1. Fitting

Prepare a $\left(44^{+0.5} \times 137.5^{+0.5}\right) \mathrm{mm}$ hole in the panel. The thickness of the material from which the panel is made should be in the range $1 . . .45 \mathrm{~mm}$.
The meter has screw terminal strips which enable the connection of $2.5 \mathrm{~mm}^{2}$ crosssection external conductors.
Meter dimensions are shown on the fig. 2.

Fig. 2. Meter overall dimension

4.2. External connection diagrams

The description of terminal strips are shown on the fig. 3a.
Connections of input signals are shown on the fig 3 b and output signals on fig. 3 c and 3d.
The meter has programmable inputs. Maximal measuring ranges are given on figures.

a/ Description of the terminal strip

b/ Connection way of input signals

c/ Connection way of digital and analogue output signals depending on the execution code

Fig. 3 External connections of the NA6 meter
Taking into consideration electromagnetic interference it is recommended to use shielded conductors for the connection of input and output signals.
The power supply must be connected by means of a two-wire conductor with a suitable cross-section ensuring its protection by means of an installation fusible cut-out, in case of a short-circuit. Requirements concerning the supply cable are regulate by EN 61010-1 p.6.10 standard.

5. SERVICING

After connecting external signals and switching the meter on, its name ris-6 and also the current version of the program, e.g. $\cap: 00$. are displayed.
After ca 3 seconds, the meter transits automatically into the working mode in which it carries out the measurement and the display of the measured value on the display and the bargraph.
Depending on alarm parameter settings, the resolution and bargraph type, alarm thresholds are also displayed on the bargraph.
The meter blanks automatically insignificant zeros.

Key functions:

Fig. 4 Description of the NA6 frontal plate.

- entry into the programming mode (hold down during ca 3 seconds),
- entry into the chosen parameter level,
- entry into the changing mode of the parameter value,
- acceptation of the changed parameter value.

- Key to increase the value
- display of the minimal value (first pressure), maximal (second pressure), return to measurement (third pressure),
- mowing on the preview menu or programming matrix,
- change of the chosen parameter value - increasing of the value.

- Escape key
- entry into the menu of recording results,
- entry into the preview menu or programming matrix,
- exit from the preview menu or programming matrix,
- escape from the parameter change.

The pressure and hold down the key during 3 seconds causes the entry into the programming mode. The programming mode is protected by the SEC safety code.
The pressure and hold down the key during 3 seconds causes the entry into the preview menu and the menu of recorded values. One must move on the preview menu by means of the $\boldsymbol{\Delta}$ key. In this menu, only all programmed parameters except servicing parameters, are accessible to readout.
The exit from the preview menu is operated by means of the key. It is also possible in the preview menu to review recorded $\boldsymbol{r} \boldsymbol{\varepsilon} \boldsymbol{S}$ values.
The pressure of the key on the $r \varepsilon S!$ parameter causes the entry into the pre-
view menu of recorder values. The recorded result number is displayed alternately with the value e.g. $\operatorname{B2O} 0$: 74 .

The moving on recorded values follows by means of the Δ key. The pressure of this key longer than ca 2 seconds will cause the acceleration of the review. The pressure of the \longleftarrow key in any moment will cause the lighting of the number of recorded results. The exit from the review of recorded values is operated by means of the $\overbrace{\text { key. }}$

The algorithm of the meter servicing is presented on the fig. 5.
The appearance of the following symbols and inscriptions on the display means:
(ఒ) - Entry into the selected level

苞

Fig 5. Servicing algorithm of the NA6 meter.

It is possible to change meter parameters:

- from the meter keyboard (p 5.1)

Incorrectly introduced safety code

Exceeding of the upper measuring range or lack of sensor

Exceeding of the lower measuring range or short-circuited sensor

Error of the conductor resistance compensation. No connected conductor or damaged conductor.

- through RS-485 (p.6.)

5.1. Change of the NA6 meter parameters from the keyboard

The pressure of the \varangle key during circa three seconds causes the display of the $S E[$.

Inscription alternately with the set zero value by the manufacturer. The introduction of the correct code causes the entry into the programming mode. The fig. 6 represents the transition matrix into the programming mode. One can move on groups of main parameters eg: Ch1, Ch2, bAr1, bAr2, Al1, Al2, etc, by means of the

The pressure of the \square key on the given level, causes the entry into parameters of this level. The moving on the given level is operated by means of the $\boldsymbol{\Delta}$ key. In order to change the value, one must use the the parameter change, one must press the key.
By means of the key, one can exit from the selected level and programming matrix to the measurement.
During the meter operation in the programming mode, the measurement result is displayed on the bargraph, excepting the function of the display test selecting.

$\begin{gathered} \mathrm{Lev} \\ \mathrm{Nr} \end{gathered}$	Main menu	Parameters of the selected level											
1	Eiti	Input type	Lo:n Lower value of input range	H, : Upper value of input range	Func Mathem. func.	Con Kind of comp.	$\sigma^{\circ} \rho$ Decim. point	Cot Meas. time	: nd : Input ind. charact.	: . H: Param. of ind. charact.	o. $3:$ Param. of ind. charact.	$: H^{2}$ Param. of ind. charact.	$\sigma .42$ Param. of ind. charact.
2	6 ECO	$\begin{aligned} & 6 y \rho \\ & \text { Input } \\ & \text { type } \end{aligned}$	Lo:n Lower value of input range	H : : n Upper value of input range	Func Mathem. func.	Con Kind of comp.	0.9 Decim. point	Cot Meas. time	: $n \boldsymbol{d}$: Input ind. charact.	$: \text {, H: }$ Param. of ind. charact.	d. $3:$ Param. of ind. charact.	$: . H 2$ Param. of ind. charact.	d. $3 \mathrm{c}^{2}$ Param. of ind. charact.
3	Eifi	$E y 96$ Bargr. type	colr Bargr. colour	bri Lower bargr.	bry Upper bargr.								
4	88	$\varepsilon y 96$ Bargr. type	coir Bargr. colour	bri Lower bargr.	brif Upper bargr.								
5 12			Pri Lower threshold	Prif Upper threshold		dity Alarm delay	HOL Alarm suppor support	Curt Lower marker colour	CurH Upper marker colour				\#
13	Cot	Chas Input channel	: nod Input indiv. charac.	d. H: Param. indiv. charac.	0.3: Param. indiv. charac.	$\sigma . H 2$ Param. of indiv. charac.	0.32 Param. of indiv. charac.	bRud Baud rate	6, 46 Kind of transm.	Rór Device adress			
14	$5 E \sim$	set Param. inscript.	SEL Passw. change	c $5 t$ Test of display + bargr.	Hour Time change	Ciri Erasing of min. value	CirH Erasing of max. value						O 0 0 0 0 0
15	$2 \mathrm{CHO}_{6}$	$r E I$ Record.	For : Chan. 1 record. start	ditt : Chan. 1 record. date	:nt $:$ Chan. 1 record. interv.	Lor? Chan. 2 record. start	dRt 2 Chan. 2 record. date	:ntc Chan. 2 record. interv.					-

Examples of value changing of the chosen parameter (parameter - symbol)

Example of value changing of the chosen parameter without changing of the decimal point (number parameter)

Fig. 7.

Meter programmable parameters are presented in the table 1. The programming of parameters is possible after the previous introduction of the password.

	Symbol on the display	Parameter description
		Renge of changes

	000	Kind of compensation of sensor working conditions changes: - In case of a resistance thermometer and resistance measurement it concerns the compensation of the resistance changes of the conductor linking the sensor with the meter, - In case of a thermocouple it concerns the compensation of reference junction temperature changes.	Buto - automatic compensation (in case of resistance thermometers and resistance measurement it requires a 3-wire line.) $\mathbf{0 . 0} . .60 .0^{\circ} \mathrm{C}$ - value of the reference temperature for thermocouples. 0.0... $\mathbf{4 0 . 0} \Omega$ - resistance of two conductors for resistance thermometers and resistance measurement. The writing of a value beyond the interval of manual compensation (e.g. value 70.0) will cause the automatic compensation switching on.
	8.8	Setting of the decimal point. The setting operates both when the individual characteristic is switched off and on. The introduction of the decimal point making impossible the display of four characters on the display will cause the display of the lower or upper exceeding.	Setting possibility: 0000 000.0 00.00 0.000 Ruto - automatic choice of the decimal point
	$5 \pi i$	Averaging time of the measurement.	$0.0 . .999 .9 \mathrm{~s}$ The writing of 0 causes the switching of the measurement off and the stoppage of the meter operation. In this state, the meter displays the hour. The bargraph is blank.
	irsei	The switching off or on of the individual linear user's characteristic. - (,,individual characteristic of the display").	Sin - characteristic switched on, Cif F - characteristic switched off.

Parameters of the display individual characteristic.
On the base of given by the user coordinates of two points the meter determines (from the system of equations) a and b coefficients of the individual characteristic.

$$
\left\{\begin{array}{l}
d_{-} Y 1=a \cdot I_{-} H 1+b \\
d_{-} Y 2=a \cdot I_{-} H 2+b
\end{array}\right.
$$

Where:
I_H1 il_H2 - measured value d_Y1id_Y2 - expected value on
the display.
Fig. 9 shows the way of the individual

	88	Choice of the channel on which the alarm is to react．	［h i－channel 1 ［んで－channel 2
	$8-1$	Lower alarm threshold	－1999．．． 9999
	$8-8$	Upper alarm threshold	－1999．．． 9999
		Alarm type Fig． 8 shows alarm types	nor－normal， Bn－switched on， OFF－switched off， H．Sin－manually switched on．Till the time of the alarm type change， the alarm output is being permanently switched on． H． $\mathrm{Hif}_{\text {－manually switched off．Till }}$ the time of the alarm type change， the alarm output is being permanently switched off．
	－18	Delay of the alarm operation．The parameter is defined in seconds，i．e． one must give the time in seconds after which the alarm will operate after its occurrence． The alarm operation follows after the measurement averaging． The alarm switching off follows without delay．．	0．0．．． 999.9 Introduction of 0.0 causes the ope－ ration at the moment of the alarm occurrence．
	8190	Support of alarm signalling．In the situation when the holding function is switched on，after the alarm state stoppage，the alarm is still switched on（relay or OC contacts）． The alarm state is active till the moment of erasing it by means of the combination of \square and \square keys．	OFF－The maintenance of the alarm output is switched off． Sin－The maintenance of the alarm output is switched on．

C－6Ti	Colour of the lower threshold alarm marker．	BrF－alarm marker switched off． r－red，
E－208	Colour of the upper threshold alarm marker．	i－I－green，
		rith－red＋green，
		Other colours are accessible only in meters with a 7－colour bargraph．
		b－blue，
		－ $\boldsymbol{6}$－red＋blue，
		int－green＋blue，
		riol－red＋green＋blue，
		Fig． 10 explains the idea of CurL and CurH parameters

	Etomis	Choice of the channel on which the analog output is to react．	Ch i－channel 1 とんで－channel 2
	： 980	Switching off or on of the individual linear user＇s characteristic－（，，indivi－ dual characteristic of the analog output＂）．	Sin－characteristic switched on， Ciff－characteristic switched off． When the characteristic is switched off，the meter operates at the maximal range depending on input and range output．
		Parameters of the individual cha－ racteristic of the analog output． On the base of given coordinates of two points by the user，the meter determines（from the equation system）coefficients a and b of the individual characteristic． $\left\{\begin{array}{l} O_{-} Y 1=a \cdot d_{-} H 1+b \\ O_{-} Y 2=a \cdot d_{-} H 2+b \end{array}\right.$ where： d＿H1 and d＿H2－displayed value O＿Y1 and O＿Y2－expected value on the analog output． Fig． 9 represents the graphical illustration explaining the idea of the individual characteristic．	Setting possibility：－1999．．． 9999

$\therefore 8 \mathrm{COCO}$	Baud rate of the RS-485 interface.	24080-2400 b/s $4800-4800 \mathrm{~b} / \mathrm{s}$ 9600 - $9600 \mathrm{~b} / \mathrm{s}$
6ry	Kind of transmission through the RS-485 interface.	OFF - interface switched off 88n : - ASCII 8N1 R7E : -ASCII 7E1 R70: - ASCII 701 - Bnc' - RTU 8N2 - 8E : -RTU 8E1 -80 : - RTU 801 - Bn i-RTU 8N1
88	Device address	Setting possibility: $0 . .247$

	$-E 8$	Switching the recording on or off. At the moment of switching the recording on, the meter erases the previous stored values of the channel 1 and 2.	OFF - recording switched off rEct - recording of the channel 1 switched on $r E \subset 己$ - recording of the channel 2 switched on $r \boldsymbol{E}: \mathcal{Z}$ - recording of the channel $1+2$ switched on
	600:	Hour of recording start - kanal 1 Time format: hh:mm:ss	Setting possibility: 00:00:00 ... 23:59:59
	G8Fig:	Date of recording start - kanal 1 Date format: yy.mm.dd It is an information parameter. It not serves to define the date from which the recording is to begin, but only to inform when the recording	$\begin{aligned} & \text { Setting possibility: } \\ & \text { 70.01.01 ... 38.12.31 } \end{aligned}$
	imit	Time interval of recording - channel 1 Defines the segment of time and at which sequence the result will be to memorised. Minimal interval 1 s . Format: hh:mm:ss	Setting possibility: 00:00:00 ... 99:59:59
	1000	Time of recording start - channel 2	Setting possibility: 00:00:00 ... 23:59:59
	-68E	Date of recording start - channel 2 Date format: yy.mm.dd It is an information parameter. It is not served to define the date from which the recording is to begin, but	$\begin{aligned} & \text { Setting possibility: } \\ & \text { 70.01.01 ... 38.12.31 } \end{aligned}$
	imite	Time interval of recording - channel 2 Defines the segment of time and at which sequence the result will be to memorised. Minimal interval 1 s . Format: hh:mm:ss	Setting possibility: 00:00:00 ... 99:59:59

Fig. 8. Alarm types: a, b-normal, c-switched off, d-switched on
a)

Value I_H1 on the meter input => value d_Y1 on the display. Value I_H2 on the meter input => value d_Y2 on the display other characteristic points are calculated
b)

Value d_H1 on the display => value O_Y1 on the analogue output. Value I_H2 on the display => value O_Y2 on the analogue output other characteristic points are calculated

Fig. 9. a) Individual characteristic of the display, b) Individual characteristic of the analogue output.

Type of bargraph	Examplary settings of the bargraph and the alarm, ex. 1 Curi = G (green)	Notes
	Curi=r(red) CurH=rG (red+green)	
COEF	-	
¢ mis	-	Value under the value Pr:
	-	Value between Priand PrH
		Value ower PrH
EEEL		
01 mb		
ErEC	1711	Value without changes in time
	\qquad	Value increases
	-	Value decreases

Fig. 10. Bargraph modes.

Notice!

- The meter is working in the measuring range of defined indications by the user in Loln and Hiln parameters. Below and over, it shows a range exceeding.
- In case when the meter is working with a resistance thermometer in a twowire system, the choice of the automatic compensation option of conductor resistance changes will cause a defective meter operation and the display of ErrC inscription.
- In case of the display individual characteristic switching on, the result on the display is linearly converted according to the introduced parameters: I_H1, I_H2, d_Y1 id_Y2.
- In case of arithmetical functions and individual characteristic switching on, in the first sequence, arithmetical operations will be carried out and the obtained result is converted by the individual characteristic.
- In case of the analog output individual characteristic switching on, the measurement result is linearly converted according to the introduced para-meters: d_H1, d_H2, O_Y1 i O_Y2.
- The meter currently controls the value of the introduced parameter at the moment. In case when the introduced value exceeds the upper or the lower range of changes given in the table 1, the meter will make the parameter record.
- In case of the Input type change, a simultaneous change of the decimal point follows, optimally for the given input.
- After the supply decay, the present time is zeroed.
- The recording switching off follows in following cases: switching the recording off from the programming matrix, change of the input type, change of the recording time start or the recording time interval, setting Cnt=0, filling of the memory, and at a renewed switching of the meter on to the network.
- In case of a bargraph of Intr or Sect type, it is possible to set only one CurL and Curh markers (from one alarm). Other markers are erased automatically.
- Max and Min values are erased in case of change of input type, individual characteristic (on, off), writing standard parameters in.

Standard parameters of the NA6 meter
Table 2

Parameter description	Standard value	Parameter description	Standard value
E¢P	nomit ($\pm 40 \mathrm{~mA}$)	Chan	Chn1
Lo:n	-20.0	Pri	- 20.00
H: n	20.00	PrH	20.00
Func	OFF	GGP	OFF
Con	0 = manually	di	0
6.9	00.00	HOL ${ }^{\text {d }}$	OFF
Cot	1.0	Curt	r - Alarm 1 and 3
: n d:	OFF		OFF - other alarms
: . Hi	0	Curn	rG - Alarm 1 and 3
d. 告;			OFF - other alarms
: H2		Chmo	Chn1
$\square .42$: ndo	OFF
$\boxed{156}$	Sect	d. H;	0
coir	G	0.41	
brit	-20.0	-H己	
brer	20.00	0.52	

bRud	9600	Lor:	00:00:00
6ry	RTU 8N2	dift:	70:01:01
sor	1	:nt !	00:15:00
58 C	0	Lore	00:00:00
Hour	00:00:00	dite?	70:01:01
rec	OFF	:nt?	00:15:00

6. RS-485 INTERFACE

DB16 programmable digital meters have a serial link of RS-485 standard to communicate in computer systems and with other devices fulfilling the master function. The MODBUS asynchronous character communication protocol has been implemented on the serial link. The transmission protocol describes information exchange procedures between devices through the serial link.

6.1. Procedure of the serial interface connection

The RS-485 standard enables the direct connection to 32 devices on a single serial link up to a 1200 m distance. For the connection of a higher number of devices it is necessary to apply additional intermediate-to-separating systems.
The exit of the interface line is presented in the service manual on the fig. 3.d. In order to obtain a correct transmission it is necessary to connect lines \mathbf{A} and \mathbf{B} in parallel to their equivalent lines in other devices.
The connection must be made with a shielded conductor. The shield must be connected to the protective terminal in one point.
The GND line serves to the additional protection of the interface line at long distance connections.
One must connect GND signals between devices and in one point to the protective terminal (that is not necessary for the interface correct operation).
To obtain the connection with the computer of IBM PC class, an RS-232 into RS-485 converter is necessary or an RS-485 interface card. The way of NA6 meter connection through the PD5 converter is shown on the fig. 3d.
The designation of transmission lines for the card in the PC computer depends on the card producer.

6.2. Description of the MODBUS protocol implementation

The implemented protocol is compatible with the PI-MBUS-300 Rev G Modicon Company specification.
Set of serial link parameters of meters in the MODBUS protocol:

- meter address
- baud rate
- working mode
- information unit
- maximal response time
- 1... 247
- 2400, 4800, 9600 bit/s
- ASCII, RTU
- ASCII: 8N1, 7E1, 701
-RTU: 8N2, 8N1, 8E1, 8O1
500 ms

The serial link parameter configuration is described in the further part of the user's manual. It consists on the settlement of the baud rate (bAud parameter), device address (Adr parameter) and the type of information unit (trYb parameter).

Note:

Each meter connected to the communication network must have:

- a unique address, different from addresses of other devices connected in the network,
- an identical baud rate and information type.

6.3. Description of the MODBUS protocol functions

Following functions of the MODBUS protocol have been implemented in NA6 meters:

Function description
Table 3

Code	Meaning
$03(03 \mathrm{~h})$	Read-out of n-registers
$06(06 \mathrm{~h})$	Recording of a single register
$16(10 \mathrm{~h})$	Recording of n-registers
$17(11 \mathrm{~h})$	Identification of the slave device

The maximal number of the registers for writing or readout by one order is equal 28.

Read-out of n-registers (code 03 h)

Function is inaccessible in the publication mode.
Example: readout of 2 registers beginning from the register with the address 1 DBDh (7613) in RTU mode.
Request:

Device address	Function	Register address Hi	Register address Lo	Number of registers Hi	Number of registers Lo	Check- sum CRC
01	03	1D	BD	00	02	5243

Response:

Device address	Function	Number of bytes	Value from the register 1 DBD (7613)			Value from the register $1 \mathrm{DBE}(7614)$			Check- sum CRC		
01	03	08	3 F	80	00	00	40	00	00	00	428 BB

Record of values into the register (code 06h)

The function is accessible in the publication mode.
Example: record of the register of 1DBDh (7613) address in RTU
Request:

Device address	Function	Register address Hi	Register address Lo	Value from the register 1DBD (7613)			Check- sum CRC
01	06	1 D	BD	3 F	80	00	00

Response:

Device address	Function	Register address Hi	Register address Lo	Value from the register $1 \mathrm{DBD}(7613)$			Check- sum CRC
01	06	1 D	BD	3 F	80	00	00
85 AD							

Record into n-registers (code 10h)

The function is accessible in the publication mode
Example: record of two registers beginning from the register with 1DBDh (7613) address in RTU mode.
Request:

Device address	$\begin{aligned} & \text { 든 } \\ & \stackrel{5}{5} \end{aligned}$	Register address		Number of registers		Number of bytes	Value for the register 1DBD (7613)				Value for the register 1DBE (7614)				$\begin{aligned} & \hline \text { Check- } \\ & \text { sum } \\ & \text { CRC } \end{aligned}$
01	10	1D	BD	00	02	08	3F	80	00	00	40	00	00	00	0309

Response:

Device address	Function	Register address Hi	Register address Lo	Number of registers Hi	Number of registers Lo	Check- sum (CRC)
01	10	1 D	BD	00	02	D 780

Report identifying devices (code 11h) in RTU mode
Example: Data readout identifying the device for NA6 with a universal input.
Request:

Device address	Function	Checksum (CRC)
01	11	C0 2C

Response:

Device address	Function	Number of bytes	Device identifier	Device state	Field depending on the type of device	Check- sum
01	11	08	82	FF	$00 X X X X X$	

Device address
Function
Number of bytes
Device identifier
Device state
Field depending on the device type

Device name
Analogue output

- depending on the setpoint
- no of function 0×11
- 0x08
- 0x82
- 0xFF
- XXXXXX
- no taken advantage in NA6 meters $00 \times \times \times \times \mathrm{X}$
- field depending on the type of the analogue output
- 0x00 - lack of analogue output, $\mathrm{X} 00 \times \mathrm{XXX}$
-0×01 - voltage analogue output, $\mathrm{X} 01 \times \times \times \times$
- 0x02 - current analogue output, X 02 XXX X

No. of the software program

Check sum

- software version implemented in the meter
- X X____4 - byte variable of float type
- 2 bytes in case of work in RTU mode
- 1 byte in case of work in ASCII mode

Example:

Work in RTU mode: e.g. Mode = RTU 8N2 (value 0x02 in case of readout/record through the interface).
NA6 meter
Execution with a voltage analogue output: 00,
No. of the software version: 1.00,
Device address set on: Adr $=0 \times 01$,
For such a meter the frame has the following form:

Device address	Function	Number of bytes	Device identifier	Device state	Field depending on the device type	Check- sum (CRC)
01	11	08	82	FF	$00003 F 800000$	BE C2

6.4. Register map of DB16 meters

Register map of NA6 meters
Table 4.

Address range	Type of value	Description
$7000-7200$	Float (32 bits)	The value is placed in two successive 16-byte registers. Registers enclose the same data as 32 -byte registers from the 7500 area. Registers are only for readout.
$7200-7400$	Float (32 bits)	The value is placed in two successive 16-bit registers. Registers enclose the same data as 32 -bit registers from the 7600 area. Registers are only for readout.
$7500-7600$	Float (32 bits)	The value is placed in a 32-byte register. Registers are only for readout.
$7600-7700$	Float (32 bits)	The value is placed in a 32-bit register. Registers can be read out and recorded.

6.5. Registers for recording and readout

NA6 meter

7228	7614	Bargraph number	w/r	0... 1	Bargraph number	
					Value	
					0	Bargraph of channel 1
					1	Bargraph of channel 2
7230	7615	Bargraph type	w/r	0... 4	Bargraph type < Bargraph Nr >	
					Value	
						One-colour (OnEC)
					1	Change of colour after exceeding the alarm threshold (the colour change the whole bargraph) (Intr)
					2	Change of colour after exceeding the alarm threshold (Three-segment change of colour) (SEct)
					3	One-colour bargraph, alarm markers in another colour (PInt)
					4	Increasing/decreasing trend (trEn)
7232	7616	Colour	w/r	0... 7	Bargraph colour < Bargraph Nr >	
					Value	
					0	Bargraph off (OFF)
					1	Red (r)
					2	Green (G)
					3	Red + Green (rG)
					Other values are only accessible in meters with RGB diodes	
					4	Blue (b)
					5	Red + Blue (rb)
					6	Green + blue (Gb)
					7	Red + Green + Blue (rGb)
7234	7617	Brl	w/r	-1999... 9999	$\begin{aligned} & \text { "Magnifier" on the bargraph } \\ & \text { < Bargraph Nr >. Lower threshold } \end{aligned}$	
7236	7618	Brh	w/r	-1999... 9999	"Magnifier" on the bargraph < Bargraph Nr >. Upper threshold	

7238	7619	Alarm number	w/r	$0 . .7$	Choice of alarm number	
					Range of changes is depended on the meter execution code (number of alarms)	
7240	7620	Ch_Alarm	w/r	0... 1	Channel number on which the alarm is to react < Alarm Nr >	
					Value	
					0	Channel 1
					1	Channel 2
7242	7621	Prl	w/r	-1999... 9999	Alarm lower threshold <Alarm No>	
7244	7622	Prh	w/r	-1999... 9999	Alarm upper threshold <Alarm No>	
7246	7623	Type a	w/r	0... 4	Alarm type <Alarm No>	
					Value	
					0	Normal
					1	Switched on
					2	Switched off
					3	Manually switched on
					4	Manually switched off
7248	7624	Alarm delay	w/r	0... 999.9	Alarm delay <Alarm No>	
7250	7625	Alarm support	w/r	0... 1	Alarm signalling support <Alarm No>	
					Value	
					0	Support switched off
					1	Support switched on
7252	7626	CURL	w/r	0... 7	Bargraph colour to the lower alarm threshold < Alarm Nr >	
					Value	
					0	Bargraph switched off (0FF)
					1	Red (r)
					2	Green (G)
					3	Red + Green (rG)
					Other values accessible only in meters with RGB diodes	
					4	Blue (b)
					5	Red + Blue (rb)
					6	Green + blue (Gb)
					7	Red + Green + Blue (rGb)

					5	RTU 8E2
					6	RTU 802
					7	RTU 8N1
7272	7636	Address	w/r	0... 247		ice of the device address
7274	7637	Test	w/r	0... 1		Test of the display
					Value	
					0	Lack of operation
					1	Test
7276	7638	Hour	w/r	0... 23.5959		Current time
					This pa places gg,mm gg - m mm SS - m In case time, th matical	meter occurs with four the decimal point in format where: s hours, ans minutes, s seconds hen introducing and incorrect indicator will correct it auto-
7278	7639	Recording	w/r	0... 3		stration of measured value
					Value	
					0	Recording switched off
					1	Recording from channel 1
					2	Recording from channel 2
					3	Recording from channel 1 and 2
7280	7640	Interval	w/r	0... 99.5959		e interval of the recording < Channel number >
7282	7642	Recording time	w/r	0... 23.5959		me of the recording start < Channel number >
					This pa places gg,mm gg - m mm ss - me In case time, th matical	meter occurs with four er the decimal point in format where: s hours, ans minutes, s seconds hen introducing and incorrect indicator will correct it auto-
7284	7642	Year	w/r	1970... 2038		ar of the recording start < Channel number >
7286	7643	Month	w/r	1... 12		th of the recording start < Channel number >

7320	7660	Year of the memorised value	w / r	$1970 \ldots 2038$	Year of memorised value in memory <Channel number >
7322	7661	Month of the memorised value	w / r	$1 \ldots 12$	Month of memorised value in memory <Channel number >
7324	7662	Day of the memorised value	w / r	$1 \ldots 31$	Day of memorised value in memory <Channel number >

7332	7666	Number of the memorised value	r	0... 750	Number of memorised value in memory, placed in the first register of the buffer <channel number>
					Value
					0 Memory is empty
					1... $750 \begin{aligned} & \text { Number of the memorised } \\ & \text { value }\end{aligned}$
7334	7667	Number of recorded registers	r	0... 750	Number of recorded buffer registers <channel number>
					Value
					0 Buffer is empty
					1... 750 Number of recorded registers
7336	7668	Year	r	1970... 2038	Year for the value in the first register <channel number>
7338	7669	Month	r	1... 12	Month for the value in the first register <channel number>
7340	7670	Day	r	1... 31	Day for the value in the first register <channel number>
7342	7671	Time	r	0... 23.5959	Time for the value in the first register <channel number>
					This parameter occurs with four places after the decimal point in format gg,mmss, where: gg - means hours, mm - means minutes, ss - means seconds
7344...7382	$\begin{gathered} 7672 \ldots \\ 7691 \\ \hline \end{gathered}$	Buffer	r	-	Memorised values, read off from the memory <channel number>
					20 registers , including 20 memorised values.

1) In case of registers not occurring in the given meter series, their value is: $1 \mathrm{E}+20$

6.6. Registers only for readout

		Name		Unit	Quantity name
7000	7500	Identifier	r	-	Constant identifying the device
7002	7501	Status 1	r	-	Register describing the current state of the meter
7004	7502	Status 2	r	-	Register describing the current state of the meter
7006	7503	Steering out	r	\%	It is the register defining the control procedure of the analogue output (controllability)
7008	7504	Min 1	r	-	Minimal value of the currently measured value of channel 1
7010	7505	Max 1	r	-	Maximal value of the currently measured value of channel 1
7012	7506	Value 1	-	-	Currently measured value of channel 1
7014	7507	Hour	-		Current time
7016	7508	Min 2	r	-	Minimal value of the currently measured value of channel
7018	7509	Max 2	r	-	Maximal value of the currently measured value of channel 2
7020	7510	Value 2	r	-	Currently measured value of channel 2

1) In case of registers no occurring in the given meter series, their values is $1 \mathrm{E}+20$

Note!

- At the moment of exceeding the upper or lower range, ,,displayed value", „minimum", "maximum" parameters are set on the value $1 \mathrm{E}+20$.
- For the parameter Cnt=0 (Measurement switching off and display of the current time), „minimum", „maximum" and „displayed value" parameters are set on the value $1 \mathrm{E}+20$.

Description of the Status 1 register

Bit-15 Error of the conductor resistance compensation in channel 2
0 - Lack of error
1 - Signalling of compensation error
Bit-14... 12 Position of the decimal point in the channel 2
000 - lack
001-000,0
010-00,00
011-0,000
100 - Auto
Bit-11 Signalling of the upper range exceeding of the channel 2
0 - normal work
1 - range exceeding
Bit-10 Signalling of the lower range exceeding of the channel 2
0 - normal work
1 - range exceeding

Bit-9 Individual characteristic of the channel 2

0 - individual characteristic switched off
1 - individual characteristic switched on
Bit-8 Error of the conductor resistance compensation in the channel 1
0 - lack of error
1 - signalling of the compensation error
Bit-7... 5 Position of the decimal point in the channel 1
000 - lack
001-000,0
010-00,00
011-0,000
100 - Auto
Bit-4 Signalling of the upper range exceeding of the channel 1
0 - normal work
1 - range exceeding
Bit-3 Signalling of the lower range exceeding of the channel 1
0 - normal work
1 - range exceeding

Bit-2 Individual characteristic of the channel 1

0 - individual characteristic switched off
1 - individual characteristic switched on
Bit-1... 0 Kind of output (voltage, current)
00 - lack of analogue output
01 - current
10 - voltage

Description of the status 2 register

Bit-15. No used
Bit-14... 13 Record of measurement results in memory
0 - Registration switched off
0 - Registration from the channel 1
1 - Registration from the channel 2
1 - Registration from the channel 1 and 2
Bit-12 State of alarm 8
0 - off
1 - on
Bit-11 State of alarm 7
0 - off
1 - on
Bit-10 State of alarm 6
0 - off
1 - on
Bit-9 State of alarm 5
0 - off
1 - on
48

Bit-8 State of alarm 4

0 - off
1 - on

Bit-7. State of alarme 3

0 - off
1 - on

Bit-6 State of alarm 2

0 - off
1 - on
Bit-5 State of alarm 1
0 - off
1 - on
Bit-4... 2 Working mode and information unit
000 - interface switched off
001-8N1-ASCII
010-7E1 - ASCII
011-7O1-ASCII
100-8N2-RTU
101-8E1-RTU
110-801-RTU
111-8N1-RTU
Bit-1... 0 Baud rate
00-2400 bit/s
$01-4800 \mathrm{bit} / \mathrm{s}$
$10-9600 \mathrm{bit} / \mathrm{s}$

7. TECHNICAL DATA

INPUTS:

Pt100
Pt500
Pt1000
J (Fe-CuNi)
K (NiCr-NiAl)
N (NiCrSi-NiSi)
E (NiCr-CuNi)
R (PtRh13-Pt)
S (PtRh10-Pt)
T (Cu-CuNi)
Resistance measurement
Voltage measurement
Voltage measurement
Current measurement
Current measurement
$(-200 \ldots+850)^{\circ} \mathrm{C}$
$(-200 \ldots+850)^{\circ} \mathrm{C}$
$(-200 \ldots+850)^{\circ} \mathrm{C}$
$(-100 \ldots+1100)^{\circ} \mathrm{C}$
$(-100 \ldots+1370)^{\circ} \mathrm{C}$
$(-100 \ldots+1300)^{\circ} \mathrm{C}$
$(-100 \ldots+850)^{\circ} \mathrm{C}$
$(0 . . .+1760)^{\circ} \mathrm{C}$
$(0 . . .+1760)^{\circ} \mathrm{C}$
$(-50 \ldots+400)^{\circ} \mathrm{C}$
$0 . . .10 \mathrm{k} \Omega$
$\pm 300 \mathrm{mV}$, input resistance $>9 \mathrm{M} \Omega$,
$\pm 600 \mathrm{~V}$, input resistance $>4.2 \mathrm{M} \Omega$
$\pm 40 \mathrm{~mA}$, input resistance $<4 \Omega$
$\pm 5 \mathrm{~A}, \quad$ input resistance $=10 \mathrm{~m} \Omega \pm 10 \%$

Measuring subranges (preserving the class):

Pt100
Pt500
Pt1000
Thermocouple J
Thermocouple K
Thermocouple N
Thermocouple E
Resistance
Voltage

Current:
$320^{\circ} \mathrm{C}$
$230^{\circ} \mathrm{C}$
$290^{\circ} \mathrm{C}$
$350^{\circ} \mathrm{C}, 700^{\circ} \mathrm{C}$
$450^{\circ} \mathrm{C}, 950^{\circ} \mathrm{C}$
$550^{\circ} \mathrm{C}, 1000^{\circ} \mathrm{C}$
$250^{\circ} \mathrm{C}, 520^{\circ} \mathrm{C}$
$110 \Omega, 220 \Omega, 460 \Omega, 950 \Omega, 2100 \Omega, 5000 \Omega$
$19 \mathrm{mV}, 35 \mathrm{mV}, 75 \mathrm{mV}$, 155 mV ,
$5 \mathrm{~V}, 11 \mathrm{~V}, 22 \mathrm{~V}, 45 \mathrm{~V}, 90 \mathrm{~V}, 180 \mathrm{~V}, 360 \mathrm{~V}$
$5 \mathrm{~mA}, 11 \mathrm{~mA}, 23 \mathrm{~mA}, 1.8 \mathrm{~A}, 3.8 \mathrm{~A}$

Intensity of current flowing through the resistance thermometer: < $400 \mu \mathrm{~A}$
Resistance of conductors linking the resistance thermometer with the meter:
$<20 \Omega / 1$ wire
Thermocouple characteristics acc. EN 60584-1.
Resistance thermometer characteristics acc. IEC 751+A1+A2.

OUTPUTS:

- Analogue outputs galvanically isolated, with a resolution $=0,025 \%$ of the range
- current programmable: 0/4... 20 mA
- or voltage programmable: $0 . .10 \mathrm{~V}$
- output response time
- output error
- additional error due to ambient temperature changes:
load resistance $\leq 500 \Omega$
load resistance $\geq 500 \Omega$
100 ms
0.2% of the range
\pm (0.1\% of the range/10K)

- Relay output

4 relays; voltageless make contacts - maximal load:
voltage $\quad 250 \mathrm{~V}$ a.c., 150 V d.c.,
current 5 A 30 V d.c., 250 V a.c.,
resistance load $1250 \mathrm{VA}, 150 \mathrm{~W}$.
Programmable alarm thresholds;
Three types of alarms;
Hysteresis defined by means of the lower and upper alarm threshold;
Signalling of alarm operation on the bargraph;

- 8 outputs of open collector (OC) type
voltageless, OC type with npn transistor (max. load 25 mA)
range of connected voltage: 5 ... 30 V d.c.

- Digital output:

interface:
transmission protocol:
ASCII:
RTU:
baud rate:
maximal response time to the request frame:

Additional supply output
Memory parameters:

- meter memory (recording)

RS-485,
MODBUS,
8N1, 7E1, 7O1,
8N2, 8E1, 8O1, 8N1,
2400, 4800, 9600 baud

500 ms .
24 V d.c., maximal load 20 mA

750 samples (channel 1 or channel 2), or 375 samples (channel 1)

+ 375 samples (channel 2)
- min. record interval

Basic error:

$1 \mathrm{sec} ;$
0.1% of measuring range ± 1 digit 0.2% of measuring range ± 1 digit (for thermocouples R, S, T)

Additional errors in nominal working conditions when measuring the temperature:

- compensation of reference junction temperature changes
- compensation of conductor resistance changes
- from ambient temperature changes

Averaging time

$\pm 1^{\circ} \mathrm{C}$
$\pm 0.1 \%$ of the range
\pm (0.05% of the range/10K)
$\min 200 \mathrm{~ms} /$ channel $\min 500 \mathrm{~ms} /$ channel (temperature ranges)

Rated operation conditions:

- supply voltage depending on the execution code
- supply a.c. voltage frequency
- ambient temperature
$95 . . .230 \ldots 253 \mathrm{~V}$ a.c./d.c.
$20 . . .24 . . .40 \mathrm{~V}$ a.c./d.c.
40...50/60... 440 Hz
- 10...23... $55^{\circ} \mathrm{C}$
- storage temperature
- relative humidity
- pre-heating time:
- meter to co-operate with thermocouples, the automatic compensation is switched on
- other meter' executions

1 hour
10 min .

Sustained overload:

- thermocouples, resistance thermometers 1 \%
- measurement of voltage, current and resistance

10 \%

Momentary overload (3 s):

- sensor and voltage inputs 300 mV

10 V

- voltage input $>2,5 \mathrm{~V}$

- current input	$10 \times \ln$
Readout field (depending on execution):	2×4 LED seven-segment LED display, character height: 7 mm indication range: -1999... 9999 bargraph length: 88 mm - 48 segments in three-colour execution - 27 segments in seven-colour execution
Bargraph resolution	programmable
Bargraph accuracy	± 0.5 segment
Servicing	three keys: $\checkmark \square \rightarrow$
Ensured protection degree:	
- through the casing	IP 50
- from terminal side	IP 20
Overal dimensions	$48 \times 144 \times 100 \mathrm{~mm}$ (with terminals)
Weight:	$<0.4 \mathrm{~kg}$
Power consumption	$<13 \mathrm{VA}$
Resistance against supply decay:	acc. EN 61000-6-2
Electromagnetic compatibility: - immunity - emission	EN 61000-6-2 EN 61000-6-4 (industrial environment)
Safety requirements according EN 61010-1:	
- installation category - pollution degree	III 2
- phase-to-earth max. working voltage:	
- input	600 V
- supply	300 V
- relays	300 V
- analogue output	50 V
- RS-485	50 V

8. BEFORE A FAILURE WILL BE DECLARED

In case of incorrect symptoms please to acquaint with the table below.

SYMPTOMS	PROCEDURE
1. Lack of indications on the display. The bargraph indicates nothing.	Check the connection of the feeder cable.
2. The time is displayed on the display, e.g. H_12 alternately with 34:43.	The number of measurements Cnt = 0 has been introduced. The meter is working in the SLEEP mode. It displays the current hour.
3. Marks are displayed on the display.	Check the correctness of the input signal connec- tion. See the service manual. Check also the setting of parameters D_P, Ind, Loln and Hiln.
4. A signal inconsistent with our expectations occurs on the meter analog output.	One must check if the load resistance of the ana- logue output is in accordance with technical data. Check if the individual characteristic is not switched on. In case of necessity make changes of individual characteristic parameters or introduce manufacturer parameters Set.
5. Lack of possibility to enter into the programming mode. The inscription Err is displayed.	The programming mode is protected by a password. When the user forgets which password has been introduced, he should contact by phone the manu- facturer or the nearest authorised workshop.

6. Lack of certainty if all segments of the display or bargraph are efficient.	Enter into the programming matrix and switch the display and bargraph tSt test on. Character fields are lighted successively from 0000 to 9999. In the same time the bargraph is lighted with successive colours. If some of segments are not lighted or diodes have different colours, one must submit these defects to the nearest workshop.
7. During the operation in the programming mode, parameter values inconsistent with the range of changes given in the table 1, appear on the display.	Enter into the programming matrix and accept the SEt parameter. The meter will introduce values in accordance with the table 2.
8. A result inconsistent with our expectations appears on the display.	Check if the individual characteristic is not switched on. In case of necessity enter into the programming matrix and accept the SEt parameter. The meter will introduce parameters in accordance with the table 2.
9. The bargraph does not work in accordance with our expectations.	Check bargraph parameters. In case of a further incorrect operation, enter into the programming matrix and accept the parameter SEt. Switch the display and bargraph tSt test on.
10. Despite the exceeding of the alarm threshold the alarm relay does not switch on.	Check the delay of alarm operation introduced into the meter. In case of need, correct dLY parameters.
11. The meter, instead of displaying the measurement result, displays the parameter symbol and its value.	The meter is working in the preview mode or in the programming mode. Press the escape key \square
12. Despite of the introduced delay in the alarm operation, e.g. 30 seconds, but the alarm after this time did not operate.	The lasting alarm state was shorter than the programmed, that means that during the lasting time, the alarm withdrawal state occurred. In such a case, the meter begins to count down the time from the beginning.
13. The meter does not establish the communication with the computer through the RS-485 interface.	Check if interface conductors (A, B, GND) were correctly connected. Then, check in the programming matrix the setting of the interface (bAud, trYb, Adr). These parameters must be the same as in the used software.

9. EXAMPLES OF NA6 METER PROGRAMMING

Example 1. Programming of the individual characteristic.

If we want to programme so that to the value 4.00 mA will correspond the value 0 on the display, whereas the value 100 , to the value 20.00 mA , one must:

- enter into the programming mode and choose the $\mathbf{D} _\mathbf{P}$ parameter responsible for the decimal point. Set the decimal point on 00000
- choose the Ind parameter and switch the individual characteristic On
- choose the I_H1 parameter and introduce the value 4.00
- transit on the d_Y1 parameter and introduce the value 0
- transit on the I_H2 parameter and introduce the value 20.00
- transit on the d_Y2 parameter and introduce the value 100

Example 2 Programming of an inverse individual characteristic.

If we want to programme so that to the value 4.00 mA will correspond the value 120.5 on the display, and the value 10.8 , to the value 20.00 mA , one must:

- enter into the programming mode and choose the D_P parameter responsible for the decimal point. Set the decimal point on 0000.0
- choose the Ind parameter and switch the individual characteristic On
- choose the I_H1 parameter and introduce the value 4.00
- transit on the d_Y1 parameter and introduce the value 120.5
- transit on the I_H2 parameter and introduce the value 20.00
- transit on the d_Y2 parameter and introduce the value 10.8

Example 3 Programming of the alarm with hysteresis

If we want to programme the alarm 1 operation so that at the value $850^{\circ} \mathrm{C}$ in the channel 1 , this alarm will be switched on, whereas it will be switched off at the value $100^{\circ} \mathrm{C}$, and the alarm 2 operation so that at the value $1000^{\circ} \mathrm{C}$ in the channel 2, this alarm will be switched off and switched on at the value $-199^{\circ} \mathrm{C}$, one must:

- enter into the programming mode, choose the ChnA parameter of the alarm 1 and choose the channel 1: Ch1
- enter into the programming mode, choose the PrL parameter of the alarm 1 and introduce the value 100
- transit on the PrH parameter of the alarm 1 and introduce the value 850
- transit on the tYPA parameter of the alarm 1 and choose the function assigned as nor
- enter into the programming mode, choose the ChnA parameter of the alarm 2 and choose the channel 2: Ch2
- choose the PrL parameter of the alarm 2 and introduce the value 1000
- transit on the PrH parameter of the alarm 2 and introduce the value -199
- transit on the TYPA parameter of the alarm 2 and select the function nor

Example 4 Programming of an alarm operating in a set interval with delay.

 If we want that the alarm 1 will be switched on in the interval from 100 V to 300 V for the channel 1 and operate only after 10 seconds, one must:- enter into the programming mode, choose the ChnA parameter of the alarm 1 and choose the channel 1: Ch1
- enter into the programming mode, choose the PrL parameter of the alarm 1 and introduce the value 100
- transit on the PrH parameter of the alarm 1 and introduce the value 300
- transit on the tYPA parameter of the alarm 1 and select the function On
- transit on the dLY parameter of the alarm 1 and introduce the value 10.0 in case of the alarm state duration for a time longer than 10 seconds, the meter will switch the alarm relay on

Example 5 Programming of an analog output

If we want to programme so that to the displayed value 0.00 mA for the channel 2 will correspond the value 4.00 on the analogue output, whereas to the value 20.00 mA , the value 20.00 mA , one must:

- enter into the programming mode, choose the ChnO parameter and choose the channel 2: Ch2
- enter into the programming mode, choose the IndO parameter and switch the individual characteristic $\mathbf{O n}$
- choose the d_H1 parameter and introduce the value 0.00
- transit on the O_Y1 parameter and introduce the value 4.00
- transit on the d_H2 parameter and introduce the value 20.00
- transit on the O_Y2 parameter and introduce the value 20.00

Example 6 Bargraph programming

If we want to programme so that the bargraph 1 was of a ,,sector" type - red colour between PrL and PrH parameters, and the bargraf 2 of a „trend" type - green colour between PrL and PrH parameters - one must:

- enter into the programming mode, choose the $\mathbf{t Y P b}$ parameter of the bargraph 1 and choose SEct
- choose the coLr parameter of the bargraph 1 and choose \mathbf{r}
- choose the tYPb parameter of the bargraph 2 and choose trEn
- choose the coLr parameter of the bargraph 2 and choose G

Example 7 Programming of a bargraph with a „magnifier" on the bargraph.

 If we want to programme so that the bargraph 1 was blank for the value 0 and is to be full lighted for the value 150, whereas the bargraph 2 is to be blank for the value 25.5, and fully lighted for the value 500.2, one must:- enter into the programming mode, choose the brL parameter of the bargraph 1 and introduce the value 0
- choose the brH parameter of the bargraph 1 and introduce the value 150
- Choose the brL parameter of the bargraph 2 and introduce the value 25.5
- Choose the brH parameter of the bargraph 2 and introduce the value 500.2

Example 8 Programming of the channel 1 recording, every 20 sec, from 12:30 and channel 2 recording, every 5 minutes, from 14:00,

- enter into the programming mode, choose the Gor1 parameter and introduce the value 12:30,
- transit into Int1 parameter and introduce the value 00:00:20,
- enter into the programming mode, choose the Gor2 parameter and introduce the value 14:00,
- transit into Int2 parameter and introduce the value 00:05:00,
- choose the rEc parameter and switch rE12 recording on,

After exiting from the programming matrix, the memory will be erased and the meter begins to record results from the channel 1, from 12:30, every 20 second and from the channel 2 , from 14:00, every 5 minutes.
The meter switches the recording off in the channel in which the filling of the memory follows.

10. ORDERING PROCEDURE

Example of NA6 ordering:

Code: NA6 M GBU1141000 U means:
M - NA6 meter with two 7-colour bargraphs,
GB - digital LED displays of green colour in the channel 1 and blue colour in the channel 2,
U - universal input (table 6),
1 - current analogue output signal $0 / 4 \ldots 20 \mathrm{~mA}$,
1 - RS-485 digital output signal,
4 - additional outputs consisting of 4 relays,
1 - supply: $95 . . .253 \vee$ a.c./d.c.,
0 - socket-screw plug terminals,
00 - standard execution,
U - standard version.
In case of a custom-made execution or if you need some more additional technical information, please write to or phone our Export Department.

Input signals Table 6

11. MAINTENANCE AND GUARANTEE

The NA6 meter does not require any periodical maintenance. In case of some incorrect unit operations:

1. From the shipping date, during the period given in the annexed guarantee card

One should take the meter down from the installation and return it to the Manufacturer's Quality Control Dept.

If the unit has been used in compliance with the instructions, the Manufacturer guarantees to repair it free of charge.

2. After the guarantee period:

One should turn over the meter to repair in a certified service workshop.
The disassembling of the housing causes the cancellation of the granted guarantee.

Spare parts are available for the period of five years from the date of purchase.

The Manufacturer policy is one of continuous improvement and we reserve the right to make changes in design and specification of any products as engineering advances or necessity requires and revise the above specification without notice.
62
63

Sifam Tinsley Instrumentation Inc
3105, Creekside Village Drive, Suite 801
Kennesaw GA 30144
email - psk@sifamtinsley.com
Phone - +1 4047364903

