

CONTROLLER 48x96mm RE82

USER'S MANUAL

Contents:

1. APPLICATION 5
2. CONTROLLER SET 5
3. BASIC REQUIREMENTS, OPERATIONAL SAFETY 6
4. INSTALLATION 6
4.1. Controller Installation 6
4.2. Electrical Connections 8
4.3. Installation Recommendations 10
5. STARTING TO WORK 11
6. SERVICE 12
6.1. Programming Controller Parameters 13
6.2. Programming matrix 14
6.3. Setting Change 16
6.4. Parameter Description 17
7. CONTROLLER INPUTS AND OUTPUTS 32
7.1. Main Measuring Inputs 32
7.2. Additional Measuring Inputs 32
7.3. Binary Outputs 33
7.4. Outputs 34
8. CONTROL 35
8.1. ON-OFF Control. 35
8.2. Innovative SMART PID algorithm 35
8.2.1. Auto-tuning 36
8.2.2. Auto-tuning and „Gain Scheduling" 38
8.2.3. Proceeding Way in Case of Dissatisfying PID Control. 38
8.3. Stepper Control 40
8.4. "Gain Scheduling" Function 43
8.5. Control of Heating-cooling Type 44
9. ALARMS 45
10. TIMER FUNCTION 47
11. CURRENT TRANSFORMER INPUT 48
12. ADDITIONAL FUNCTIONS 50
12.1. Control Signal Monitoring 50
12.2. Manual Control 50
12.3. Signal Retransmission 51
12.4. Set Point Change Rate - Soft Start 52
12.5. Digital Filter 52
12.6. Manufacturer's Settings 53
13. PROGRAMMING CONTROL 54
13.1. Description of Programming Control Parameters 54
13.2. Definition of Set Point Value Programs 57
13.3. Control of the Set Point Value Program 60
14. RS-485 INTERFACE WITH MODBUS PROTOCOL 63
14.1. Introduction 63
14.2. Error Codes 64
14.3. Register Map 64
15. SOFTWARE UPDATING 88
16. ERROR SIGNALING 90
17. TECHNICAL DATA 92
18. ORDERING CODES 97

1. APPLICATION

The RE82 controller is destined for the temperature control in plastics, food, dehydration industries and everywhere when the temperature change stabilization is necessary.
The measuring input is universal for resistance thermometers (RTD), thermocouple sensors (TC), or for linear standard signals.
The controller has four outputs enabling the two-step control, step-by-step three-step control, three-step control of heating-cooling type and alarm signaling. The two-step control is acc. to the PID or ON-OFF algorithm.
The innovative SMART PID algorithm has been implemented in the controller.

2. CONTROLLER SET

The delivered controller set is composed of:

1. RE82 controller... 1 pc
2. plug with 16 screw terminals............................... 2 pcs
3. screw clamp to fix the controller in the panel....... 4 pcs
4. seal.. 1 pc
5. user's manual... 1 pcs
6. guarantee card.. 1 pc

When unpacking the controller, please check whether the type and version code on the data plate correspond to the order.

3. BASIC REQUIREMENTS, OPERATIONAL SAFETY

In the safety service scope, the controller meets to requirements of the EN 61010-1 standard.

Observations Concerning the Operational Safety:

- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- Before switching the controller on, one must check the correctness of connections to the network.
- Do not connect the controller to the network through an autotransformer.
- The removal of the controller casing during the guarantee contract period may cause its cancellation.
- The controller fulfills requirements related to electromagnetic compatibility in the industrial environment
- When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the room. This switch should be located near the device, easy accessible by the operator, and suitably marked as an element switching the controller off.
- Non-authorized removal of the casing, inappropriate use, incorrect installation or operation, create the risk of injury to personnel or controller damage.

For more detailed information, please study the User's Manual.

4. INSTALLATION

4.1. Controller Installation

Fix the controller in the panel, which the thickness should
not exceed 15 mm , by means of four screw clamps acc. to the fig. 1 . The panel cut-out should have $45^{+0,6} \times 92^{+0,6} \mathrm{~mm}$.

Fig. 1 Controller fixing in the panel
RE82 controller overall dimensions are presented on the fig. 2.

Fig. 2. Controller dimensions.

4.2. Electrical Connections

The controller has two separable terminal strips with screw terminals. Strips enable to connect all signals by a wire of $2.5 \mathrm{~mm}^{2}$ cross-section.

Fig. 3. View of controller connecting strips.

Fig. 4. Supply.

Fig. 5. Input signals.

Fig. 6. Additional input signal.

Fig. 7. Control outputs/alarm.

Fig. 8. Binary input 1 and 2

Fig. 10. RS-485 Interface

Fig. 9. Current transformer input.

Fig. 11. Transducer supply 24V

4.3. Installation Recommendations

In order to obtain a full fastness against electromagnetic noise, it is recommended to observe following principles:

- do not supply the controller from the network in the proximity of devices generating high pulse noises and do not apply common earthing circuits,
- apply network filters,
- wires leading measuring signals should be twisted in pairs, and for resistance sensors in 3-wire connection, twisted of wires of the same length, cross-section and resistance, and led in a shield as above,
- all shields should be one-side earthed or connected to the protection wire, the nearest possible to the controller,
- apply the general principle, that wires leading different signals should be led at the maximal distance between them (no less than 30 cm), and the crossing of these groups of wires made at right angle (90°).

5. STARTING TO WORK

After turning the supply on, the controller carries out the display test, displays the $-\varepsilon g \Sigma^{3}$, inscription, the program version and next, displays the measured and set value.
A character message informing about abnormalities may appear on the display (table 18).
The PID control algorithm with the proportional range $30^{\circ} \mathrm{C}$, a 300 seconds' integration time constant, a 60 seconds' differentiation time constant and a 20 seconds' pulse period are set by the manufacturer.

Changing the Set Point Value

One can change the set point value by pressing the \square or

-(push-button (fig. 12). The beginning of change is signaled by the flickering dot of the lower display. One must accept the new set point value by holding down the $\longleftarrow \sim$ push-button during 30 seconds since the last pressure of the ∇ or \square push-button. In the contrary, the old value will be restored. The change limitation is set by parameters SPLi and SPLH.

6. SERVICE

The controller service is presented on the fig. 13

6.1. Programming Controller Parameters

The pressure and holding down the \longleftarrow push-button during ca 2 sec. causes the entry in the programming matrix. The programming matrix can be protected by an access code. In case when giving a wrong value of the code, it is only possible to see settings through - without the possibility of changes.

The fig 14. presents the transition matrix in the programming mode. The transition between levels is carrying out by means of $\boldsymbol{\nabla}$ or $\boldsymbol{\Delta}$, push-buttons and the level selection by means of the \longleftarrow push-button. After selecting the level, the transition between parameters is carried out by means of ∇ or Δ push-buttons. In order to change the parameter setting, one must proceed acc. to the section 6.3. In order to exit from the selected level, one must transit between parameters until the symbol [. . .] appears and press the \longleftarrow push-button.

In order to exit from the programming matrix to the normal working mode, one must transit between levels until the symbol [. . .] appears and press the \longleftarrow push-button.

Some controller parameters can be invisible - it depends on the current configuration.

The table 1 includes the description of parameters. The return to the normal working mode follows automatically after 30 seconds since the last push-button pressure.

6.2. Programming matrix

inP Input parameters	un. ε Unit	in. $6 y$ Kind of main input	d^{P} Pos. of decimal point	- n.io Indic. of lower thre- eshold	, n. H , Indic. of higher threeshold	Sh, F Shift of measured value	. 2.ty Kind of auxilliary input	dPe Pos. of decimal point	- 2.2.o Indic. of lower threeshold
out? Output parameters	out: Function of output 1	- 24 Type of output 1	out? Function of output 2	ocesy Type of output 2	out 3 Function of output 3	out4 Function of output 4	$\begin{gathered} F R \text { it } \\ \text { Ctr } \\ \text { signal } \\ \text { type } \\ \text { when } \\ \text { defec- } \\ \text { ted } \end{gathered}$	4F: State signal whenFR: $=$ 45 F	4 Upper limit of the mean value
ckri Control parameters	8LE Control algo--rithm	EYPE Kind of control	HS Hysteresis		E.nuo Valve opennimg	を.inu Valve closing time	nink. Valve min operation	$\begin{aligned} & \text { y-io } \\ & \text { Min. } \\ & \text { control } \\ & \text { signal } \end{aligned}$	у-H, Max. control signal
P. σ^{\prime}	Submenu: P, \% :				Submenu: P, de, P, d3, P, dч		Submenu: P, dT		
PID Parameters	Pb Proportional band	ε. Integration time constant	td Different time constant	40 Correction of control signal	Parameters as for PID1		Pof Proportional band		$\varepsilon d C$ Diffrent time constant
RLR Alarm parameters	8 :5P Set value for alarm 1	8 :ou Deviation for alarm 1	$8: 14$ Hysteresis for alarm 1	$8: t \varepsilon$ Memory of alarm 1	R25P ... 82t Parameters of alarm 2 (as for alarm 1)		835P... 83 L を Parameters of alarm 3 (as for alarm 1)		$\begin{array}{\|c\|} \hline \text { R459... } \\ \text { 84tic } \\ \text { Param. of } \\ \text { alam 4 } 4 \\ \text { (as for } \\ \text { alarm 1) } \\ \hline \end{array}$
SPQ Parame- ters of set-point value	spind Kind of set-point value	C.PrL Program No to carry out	$\begin{gathered} \hline \text { SP } \\ \text { Set } \\ \text { value } \\ \text { SP } \\ \hline \end{gathered}$	$\begin{gathered} \text { SPP } \\ \text { Set } \\ \text { value } \\ \mathrm{SP} 2 \\ \hline \end{gathered}$	593 Set value SP3	$5 P 4$ Set value SP4	$\begin{gathered} \hline S P L \\ \text { Lower } \\ \text { limita- } \\ \text { tion SP } \\ \hline \end{gathered}$	$\begin{gathered} \text { SPH } \\ \text { Upper } \\ \text { limita- } \\ \text { tion SP } \\ \hline \end{gathered}$	SP.er Accretion rate of set value
$\begin{gathered} \text { Prif } \\ \text { Pro- } \\ \text { gramm } \\ \text { control } \\ \text { parame- } \\ \text { ters } \\ \hline \end{gathered}$	Description in programming controler								
$\begin{gathered} \hline \text { rekr } \\ \text { Re- } \\ \text { trans- } \\ \text { mis- } \\ \text { sion } \\ \text { param. } \\ \hline \end{gathered}$	Rofn Retransmis. function	Roio Lower retransmis. threeshold	RaH. Lower retransmis. threeshold	Transit to higher level					
$\operatorname{inc} \varepsilon$ Interface param.	Rodr Controller address	bRud Baud rate	Prot Transmis. protocol	Transit to higher level					
seru Service param.	SECU Access code	$S t F_{n}$ Autotuning function	ε in Timer function	$\varepsilon \sin \varepsilon$ Count down of timer time	d. 2 View of auxilliary output	$d C t$ View of the heater current	tout Exit time from view	bRi: Function of upper bargraph	bRe? Function of lower bargraph

Fig. 14. Programming matrix

, 2. Indic． of higer thre－ eshold	F．it Time constant of filter	bre： Binary input 1 function	bne？ Binary input 2 function	万 Transit of higher level						
L． 48 Max sys． deviation when calc． mean value	co： Pulse time out1	とoz Pulse time out2	とo3 Pulse time out3	と०4 Pulse time out4	万 Transit of higher level					
Lucy Gain Schedul＂ function	LiSnb Number of PID for GS	Fil ： 2 Switching level PID1－2	Li 23 Switching level PID2－3	［í34 Switching level PID3－4	${ }_{4} 5 \varepsilon \varepsilon$ Con－ stant PID set	Stio Lower thres－ －hold ST	Sc． H ， Upper thres－ －hold	Fob Re－ ver－ sible signal	$\begin{aligned} & \text { izal } \\ & \text { Vale } \\ & \text { position } \\ & \text { when } \\ & \text { auxiliary } \\ & \text { input } \\ & \text { error } \end{aligned}$	Transit to higher level
๑ Transit to higher level										
$8459 \ldots$ 8 出 ε Parameters of alarm 4 （as for alarm 1）	hb．5P Set value of current alarm	hbry Hyste－ resis of current alarm	o．SP Set value of current alarm	oSHy Hyste－ resis of current alarm						
5 Transit to higher level										

$\left.\begin{array}{|c|c|c|}\hline \text { bRri } & \text { bRrh } & \begin{array}{c}\text { ．．．} \\ \begin{array}{c}\text { Lower } \\ \text { threeshold } \\ \text { for bar－} \\ \text { graph }\end{array}\end{array} \begin{array}{c}\text { Upper } \\ \text { thre－} \\ \text { eshold for } \\ \text { bargraph }\end{array}\end{array} \begin{array}{c}\text { Stransit } \\ \text { to higher } \\ \text { level }\end{array}\right\}$

6.3. Setting Change

The change of the parameter setting begins after pressing the \longleftarrow push-button during the display of the parameter name. The setting selection is carried out through \qquad and \qquad pushbuttons, and accepted by the \square push-button. The change cancellation follows after pressing of \sim push-button or automatically after 30 sec since the last push-button pressure.
The way to change the setting is shown on the fig. 15.

Fig. 15. Change of number, text and time parameter settings.

6.4. Parameter Description

The list of parameters in the menu is presented in the table 1.
List of configuration parameters
Table 1

Parameter symbol	Parameter description	Manufac- turer setting	Range of parameter changes	
			Sensors	Linear input
- nP - Input parameters				
unit	Unit	Of	of: Celsius degrees of: Fahrenheit degrees Pi: Physical units	
. ncy	Kind of main input	Pt ;	PE : Pt100 Pe i0: Pt1000 $\boldsymbol{\varepsilon}-\boldsymbol{s}:$ thermocouple J $\varepsilon-\varepsilon$: thermocouple T $\varepsilon-\varepsilon$: thermocouple K $\boldsymbol{\varepsilon}-\boldsymbol{S}$: thermocouple S $\varepsilon-r$: thermocouple R $\varepsilon-\boldsymbol{b}$: thermocouple B $\boldsymbol{\varepsilon}-\boldsymbol{\varepsilon}$: thermocouple E $\varepsilon-n$: thermocouple N $\varepsilon-\boldsymbol{L}$: thermocouple L $0-20$: linear current 0-20mA $4-20:$ linear current 4-20mA $\boldsymbol{0}-5$: linear voltage $0-5 \mathrm{~V}$ $0-10:$ linear voltage $0-10 \mathrm{~V}$	
$d P$	Position of the main input decimal point	i- 0^{\prime}	O_dP: without decimal point i_dP: 1 decimal place	O_dP:without decimal point i_dP: 1 decimal point 2.dP: 2 decimal point

- nio	Indication for the lower threshold of the linear main input	0.0	-	-1999... 9999 1)
, n.hir	Indication for the upper threshold of the linear main input	100.0	-	-1999... 9999 1)
SH, $\%$	Measured value shift of the main input	$0.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -100.0 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(-180.0 \ldots . .180 .0^{\circ} \mathrm{F}\right) \end{aligned}$	-999...999 1)
- 2tS	Kind of the auxiliary input	$4-20$	$0-20$: linear current $0-20 \mathrm{~mA}$ $4-20$: linear current $4-20 \mathrm{~mA}$	
OPQ^{2}	Position of the decimal point	i-di	-	O_dP: without decimal point i_dP: 1 decimal point 2_dP: 2 decimal point
- 240	Indication for the lower threshold of the auxiliary linear input	0.0	-	-1999... 9999 1)
. 2.4	Indication for the upper threshold of the auxiliary linear input	100.0	-	-1999... 9999 1)
$F \cdot L t$	Time constant of the filter	0.5	ofF: filter disabled 0.2: time constant 0.2 s 0.5 : time constant 0.5 s i: time constant 1 s 2 : time constant 2 s 5 : time constant 5 s i0: time constant 10 s 20 : time constant 20 s 50: time constant 50 s 100: time constant 100 s	

bon :	Function of the binary input 1	nong	none: none Stoo: control stop 4Rind: switching into manual working SP?: switching SP1 into SP2 - 5.85 : erasing of timer alarm PSt8: program start PnSt: jump to the next segment Phis: stopping to count the set point in the program s甲-d: decreasing of the set point value sP-w: increasing of the set point value - n.5P: switching SP into additional input value
bane 2	Function of the binary input 2	nong	none: none Sto ${ }^{\circ}$: control stop HRnd: switching into manual working SP2: switching SP1 into SP2 -5.8t: erasing of timer alarm PSt8: program start PnSt: jump to the next segment Phi d: stopping to count the set point in the program sP-d: decreasing of the set point value sP-u: increasing of the set point value - n.59: switching SP into additional input value
owt ${ }^{\text {- O Output parameters }}$			
out:	Function of output 1	$马$	or \boldsymbol{F} : without function צ: control signal heating or control signal „open" for analog valve 30% : control signal for the stepper control - opening5) SiL: control signal for the stepper control - closing5) Cooi: control signal - cooling or control signal „close" for analog valve AH: : upper absolute alarm Rit o: lower absolute alarm

			duhi : upper relative alarm duio: lower relative alarm du a: inner relative alarm duou: outer relative alarm BLer: : timer alarm rEEr: retransmission6) ε_{u} : auxiliary output for the program-following control ε_{ω} : auxiliary output for the program-following control $\varepsilon_{u} 3$: auxiliary output for the program-following control RL.F: : alarm in case of sensor failure or exceeding the measuring range
- :.ty	Type of output 1	$4-202)$	rELS: relay output $55 r$: voltage output $0 / 5 \mathrm{~V}$ 4-20: continuous current output $4-20 \mathrm{~mA}$ 0-20: continuous current output $0-20 \mathrm{~mA}$ 0 - is: continuous voltage output $0-10 \mathrm{~V}$
out2	Function of output 2	off	ofF: without function צ: control signal heating or control signal „open" for analog valve 400: control signal for the stepper control - opening5) Yif: control signal for the stepper control - closing5) Cooi: control signal - cooling, or control signal „close" for analog valve Rh, : upper absolute alarm R.: o: lower absolute alarm duhi : upper relative alarm dui o: lower relative alarm duen: inner relative alarm duou: outer relative alarm BLer: timer alarm 9i.hb: heater damage alarm RL.oS: controlling element damage alarm (short circuit) rekr: retransmission6) ε_{u} :: auxiliary output for the program-following control

			$\varepsilon_{u} \mathbf{c}^{2}$: auxiliary output for the program-following control $\varepsilon_{u} 3$: auxiliary output for the program-following control 8:.F: : alarm in case of sensor failure or exceeding the measuring range
octs	Type of output 2	$4-20^{2}$	-E: צ: relay output SSr: voltage output $0 / 5 \mathrm{~V}$ 4-20: current continuous output 4-20 mA 0-20: current continuous output $0-20 \mathrm{~mA}$ $0-10$: voltage continuous output $0-10 \mathrm{~V}$
out 3	Function of output 3	ofr	off: without function 3: control signal heating or control signal „open" for analog valve 309: control signal for the stepper control - opening5) sif: : control signal for the stepper control - closing5) Cool: control signal - cooling or control signal „close" for analog valve 84. : upper absolute alarm R.Lo: lower absolute alarm duhi : upper relative alarm duio: lower relative alarm du n: inner relative alarm duou: outer relative alarm BLetr: timer alarm RL.hb: heater damage alarm 8L.oS: controlling element damage alarm (short circuit) ε_{u} : : auxiliary output for the program-following control $\varepsilon_{u}{ }^{\text {: }}$: auxiliary output for the program-following control $\varepsilon_{u} 3$: auxiliary output for the program-following control 8:.F: : alarm in case of sensor failure or exceeding the measuring range

outy	Function of output 4	off	off: without function S: control signal heating or control signal „open" for analog valve 309: control signal for the stepper control - opening5) Y4: : control signal for the stepper control - closing5) Coot: control signal - cooling or control signal "close" for analog valve RH. : upper absolute alarm Rito: lower absolute alarm duhi : upper relative alarm duio: lower relative alarm duen: inner relative alarm duou: outer relative alarm Bu.sr: timer alarm RLins: heater damage alarm RL.OS: controlling element damage alarm (short circuit) $\varepsilon_{u}:$: auxiliary output for the program-following control ε_{u} ?: auxiliary output for the program-following control $\varepsilon_{u} 3$: auxiliary output for the program-following control 8:.F: : alarm in case of sensor failure or exceeding the measuring range
$F 8:$	Selection of the control signal of the output for proportional control in case of a sensor failure or for program control in case of control stoppage ${ }^{7)}$		ofF- the output is turned off SF: - the output takes the value set with the $\boldsymbol{s f}:$: parameter niESn - the output takes the mean value. The maximum allowable value of the control signal at the output can be defined with the sint parameter. The mean value is measured at 1-minute intervals and only when the system deviation is lower than the $\mathbf{L S i}$ parameter value

3Fi	Value of the control signal in case when FP it $=4 F \mathrm{~F}$	0.0	0.0....100.0
צnit	Upper mean vaule limit	5.0 \%	0.0...100.0
L.3\%	Maximum system deviation when calculating mean value	8.0	0.0...999.9

co:	Pulse period of output 1	20.0 s	0.5...99.9 s	
toz	Pulse period of output 2	20.0 s	0.5...99.9 s	
to3	Pulse period of output 3	20.0 s	0.5...99.9 s	
604	Pulse period of output 4	20.0 s	0.5...99.9 s	
ctri - Control parameters				
815	Control algorithm		onof: control algorithm on-off P. б: control algorithm PID	
csig	Kind of control	1 n	d. r: direct control (cooling) - nu: reverse control (heating)	
HS	Hysteresis	$1.1{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.2 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.2 \ldots 180.0^{\circ} \mathrm{F}\right) \end{aligned}$	
Hin	Displacement zone for heatingcooling control for dead zone for stepper control.	$0.4{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.0 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.0 . . .180 .0^{\circ} \mathrm{F}\right) \end{aligned}$	0... 999 1)
criuo	Valve open time	60.0 s	3.0...600.0 s	
triuc	Valve close time	60.0 s	3.0..600.0 s	
rinc.u	Minimum valve work time	0.2 s	0.1...99.9 s	
s-io	Minimum control signal	0,0 \%	0.0... 100.0 \%	

צ-ヶ,	Maximum control signal	100.0 \%	0.0...100.0 \%
6ts	"Gain Scheduling" function	off	off: disabled 59 : from the set point value set: constant PID set
GSnb	Number of PID sets for "Gain Scheduling" from the set point value	2	2: 2 PID sets 3: 3 PID sets 4: 4 PID sets
Ui ic	Switching levels for PID1 and PID 2 sets	0.0	MIN...MAX 3)
U23	Switching levels for PID2 and PID 3 sets	0.0	MIN...MAX 3)
Ui34	Switching levels for PID3 and PID 4 sets	0.0	MIN...MAX 3)
cset	Selection of the constant PID set	Proi	P, $\boldsymbol{\sigma}:$: PID1 sets P, $\boldsymbol{\sim}$: PID2 sets P, ©3: PID3 sets P. бч: PID4 sets
Steo	Lower threshold for auto-tuning	$0.0{ }^{\circ} \mathrm{C}$	MIN...MAX 3)
Sth,	Upper threshold for auto-tuning	$800.0{ }^{\circ} \mathrm{C}$	MIN...MAX 3)
Fob	Stepper control algorithm type	no	no: algorithm without feedback SE 5: algorithm with feedback
$\cdot 2 F_{i}$	Valve position, when auxiliary input error	u.ci	u. Ct: valve closing u-o. : valve opening u-no: valve position unchanged

P. $\boldsymbol{\sigma}$ - PID parameters

Pr 6	96	Proportional band	$30.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.1 \ldots 550.0^{\circ} \mathrm{C} \\ & \left(0.1 \ldots 990.0^{\circ} \mathrm{F}\right) \end{aligned}$
	$\varepsilon \cdot$	Integration time constant	300 s	0...9999 s
	to	Differentiation time constant	60.0 s	0.0... 2500 s
	40	Correction of the command signal, for P or control type PD	0.0 \%	0...100.0 \%
P. d	962 \&. tol 402	Second set of PID parameters	as PB, TI, TD, YO	
P, 63	$\begin{aligned} & 963 \\ & 6.3 \\ & 603 \\ & 903 \end{aligned}$	Third set of PID parameters	as PB, TI, TD, YO	
P. 0^{4}	$\begin{aligned} & 964 \\ & 614 \\ & 604 \\ & 904 \end{aligned}$	Fourth set of PID parameters	as PB, TI, TD, YO	
Prof	$\rho_{b c}$	Proportional range for cooling loop (in relation to PB)	100.0 \%	0.1... 200 \%
	E. 6	Integration time constant	300 s	0... 9999 s
		Differentiation time constant	60.0 s	0.0...2500 s

Rit Rr - Alarm parameters			
81.59	Set point value for absolute alarm1	100.0	MIN...MAX 3)
8:0u	Deviation from the set point value for relative alarm 1	$2.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -200.0 \ldots 200.0^{\circ} \mathrm{C} \\ & \left(-360.0 \ldots 360.0^{\circ} \mathrm{F}\right) \end{aligned}$
8:HS	Hysteresis for alarm 1	$1.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.2 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.2 \ldots 180.0^{\circ} \mathrm{F}\right) \end{aligned}$
8:.t	Memory of alarm 1	off	off: disabled on: enabled
8.259	Set point value for absolute alarm 2	100.0	MIN...MAX 3)

8.30	Deviation from the set point value for relative alarm 2	$2.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -200.0 \ldots 200.0^{\circ} \mathrm{C} \\ & \left(-360.0 \ldots 360.0^{\circ} \mathrm{F}\right) \end{aligned}$
82.ns	Hysteresis for alarm 2	$1.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.2 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.2 \ldots . .180 .0^{\circ} \mathrm{F}\right) \end{aligned}$
Rett	Memory of alarm 2	off	off: disabled on: enabled
8359	Set point value for absolute alarm 3	$100.0{ }^{\circ} \mathrm{C}$	MIN...MAX ${ }^{3}$
83.6	Deviation from the set point value for relative alarm 3	$2.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -200.0 \ldots 200.0^{\circ} \mathrm{C} \\ & \left(-360.0 \ldots 360.0^{\circ} \mathrm{F}\right) \end{aligned}$
834	Hysteresis for alarm 3	$1.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.2 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.2 \ldots .180 .0^{\circ} \mathrm{F}\right) \end{aligned}$
83:t	Memory of alarm 3	off	off: disabled on: enabled
8459	Set point value for absolute alarm 4	$100.0{ }^{\circ} \mathrm{C}$	MIN...MAX ${ }^{3}$

8400	Deviation from the set point value for relative alarm 4	$2.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -200.0 \ldots 200.0^{\circ} \mathrm{C} \\ & \left(-360.0 \ldots 360.0^{\circ} \mathrm{F}\right) \end{aligned}$
84\%	Hysteresis for alarm 4	$1.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0.2 \ldots 100.0^{\circ} \mathrm{C} \\ & \left(0.2 \ldots . .180 .0^{\circ} \mathrm{F}\right) \end{aligned}$
84:	Memory of alarm 4	off	off: disabled on: enabled
h. 6.59	Set point for the heater damage alarm	0.0 A	0.0...50.0 A
hbus	Hysteresis for the heater damage alarm	0.1 A	0.1...50.0 A
0.559	Set point for the controlling element damage alarm (short-circuit)	0.0 A	0,0...50.0 A
oshy	Hysteresis for the controlling element damage alarm (short--circuit)	0.1 A	0.1...50.0 A

SPP - Set point value parameters

5P.nd	Kind of set point value	$59: 3$	SP :.2: set point value SP1 or SP2 r.in n : set point value with soft start in units per minute r.fir: set point value with soft start in units per hour - nc: set point value from the additional input PrG: set point value from programming control 59.n: set point value SP or from the additional input
CPra	Program No to carry out	1	1... 15
59	Set point value SP	$0.0{ }^{\circ} \mathrm{C}$	MIN...MAX ${ }^{3}$

SPe	Set point value SP2	$0.0{ }^{\circ} \mathrm{C}$	MIN...MAX 3)	
593	Set point value SP3	0, $0^{\circ} \mathrm{C}$	MIN...MAX ${ }^{\text {3 }}$	
594	Set point value SP4	$0.0{ }^{\circ} \mathrm{C}$	MIN...MAX 3)	
59 L	Lower limitation of the set point value change	$-200{ }^{\circ} \mathrm{C}$	MIN...MAX ${ }^{3}$	
SPH	Upper limitation of the set point value change	$850{ }^{\circ} \mathrm{C}$	MIN...MAX 3)	
sprer	Accretion rate of the set point value SP1 or SP2 during the soft start.	$0.0{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0 . .999 .9 \text { 4 } \\ & \text { time unit } \end{aligned}$	$\left.\begin{array}{l} 0 \ldots 9999 \\ \text { time unit } \end{array}\right)$
Prit - Programming control parameters				
The description of parameters is in the table 5: Programming control				
- nte - Serial interface parameters				
Bodr	Device address	1	1... 247	
bRud	Baud rate	96	48: $4800 \mathrm{bit} / \mathrm{s}$ 96: $9600 \mathrm{bit} / \mathrm{s}$ ige: $19200 \mathrm{bit/s}$ $384: 38400 \mathrm{bit} / \mathrm{s}$ $576: 57600 \mathrm{bit} / \mathrm{s}$	
Prot	Protocol	-8nc	ngng: none -8n2: RTU 8N2 - $86:$ RTU 8E1 r8o : RTU 801 r-8n : RTU 8N1	
retr - Retransmission parameters				
BoFn	$\begin{array}{lr} \text { Quantity } & \text { re- } \\ \text { transmitted on } \\ \text { the continuous } \\ \text { output } \end{array}$	Pu	$P_{u}:$ measured value on the main input PV PuC: measured value on the additional input PV2 P: 2 : measured value PV - PV2 $P 2$ - $:$: measured value PV2-PV 5ρ : set point value du: control deviation (set point value - measured value)	

Saio	Lower threshold of the signal to retransmit	0.0	MIN...MAX ${ }^{\text {3 }}$
Boh,	Upper threshold of the signal to retransmit	100.0	MIN...MAX 3)
SErP - Service parameters			
SEC:	Access code to the menu	0	0...9999
$56.5 n$	Auto-tuning function	on	off: locked on: available
bin	Timer function	off	off: disabled on: enabled
$\varepsilon \cdot i \varepsilon$	Recounting time by the Timer	30.0 min	0.1...999.9 min
d. ${ }^{2}$	Monitoring of the auxiliary input	off	off: disabled on: enabled
dit	Monitoring of the heater current	off	off: disabled on: enabled
tout	Time of the automatic exit from the monitoring mode	30 s	0... 9999 s
bRr :	Function of the upper bargraph	Pu	$P_{u}:$ measured value on the main input PV Pue: measured value on the additional input PV2 $5 P$: set point value Ψ : control signal on the output 1 $צ z^{3}$: control signal on the output 2 5-E $\boldsymbol{\sigma}$: segment time ρ_{-6} 万: program time
bRre	Function of the lower bargraph	59	$P_{u}:$ measured value on the main input PV Pue: measured value on the additional input PV2 5ρ : set point value Ψ : control signal on the output 1 $s z^{3}$: control signal on the output 2 $5-\boldsymbol{5}$: segment time - - пn: program time

bRri	Lower threshold for bargraphs (for PV, PV2andSP)	$0{ }^{\circ} \mathrm{C}$	MIN...MAX 3)
bRri	Upper threshold for bargraphs (forPV, PV2andSP)	$850^{\circ} \mathrm{C}$	MIN...MAX 3)

1) The definition at which the given parameter is shown depends on the parameter or - position of the decimal point.
2) For the output $0 / 4 \ldots 20 \mathrm{~mA}$, parameter to write, for other cases, to readout acc. to the version code.
3) See table 2.
4) Time unit defined by the parameter SP.ind (r.ī• п, r.ir $)$.
5) Applies to binary output
6) Applies to analog output
7) For control $8: G=$ ono \mathcal{F} and $\mathscr{G L}<=50 \%$, control signal $h=0 \%$, צFi $>50 \%$, control signal $h=100 \%$.

Caution! The accessibility of parameters depends on the controller version and its current settings.

Symbol	Input/ sensor	MIN	MAX
Pt	Thermoresistor Pt100	$\begin{aligned} & \hline-200^{\circ} \mathrm{C} \\ & \left(-328^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 850^{\circ} \mathrm{C} \\ \left(1562^{\circ} \mathrm{F}\right) \end{gathered}$
Ptio	thermoresistor Pt1000	$\begin{aligned} & -200^{\circ} \mathrm{C} \\ & \left(-328^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	$\begin{gathered} 850^{\circ} \mathrm{C} \\ \left(1562^{\circ} \mathrm{F}\right) \end{gathered}$
$t-u$	Thermocouple of J type	$\begin{aligned} & -100^{\circ} \mathrm{C} \\ & \left(-148^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 1200{ }^{\circ} \mathrm{C} \\ \left(2190^{\circ} \mathrm{F}\right) \end{gathered}$
$t-t$	Thermocouple of T type	$\begin{aligned} & -100^{\circ} \mathrm{C} \\ & \left(-148{ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 400^{\circ} \mathrm{C} \\ & \left(752^{\circ} \mathrm{F}\right) \end{aligned}$
$\varepsilon-\underbrace{\prime}$	Thermocouple of K type	$\begin{gathered} \hline-100^{\circ} \mathrm{C} \\ \left(-148^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1372^{\circ} \mathrm{C} \\ \left(2501,6^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$
t-5	Thermocouple of S type	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1767^{\circ} \mathrm{C} \\ \left(3212,6^{\circ} \mathrm{F}\right) \end{gathered}$
$t-r$	Thermocouple of R type	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1767^{\circ} \mathrm{C} \\ \left(3212,6^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$
t-b	Thermocouple of B type	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 1767^{\circ} \mathrm{C} \\ \left(3212,6^{\circ} \mathrm{F}\right) \end{gathered}$
$\varepsilon-\varepsilon$	Thermocouple of E type	$\begin{aligned} & -100^{\circ} \mathrm{C} \\ & \left(-148^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 1000{ }^{\circ} \mathrm{C} \\ \left(1832^{\circ} \mathrm{F}\right) \end{gathered}$
$t-n$	Thermocouple of N type	$\begin{aligned} & -100^{\circ} \mathrm{C} \\ & \left(-148^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 1300^{\circ} \mathrm{C} \\ \left(2372^{\circ} \mathrm{F}\right) \end{gathered}$
$t-i$	Thermocouple of L type	$\begin{gathered} \hline-100^{\circ} \mathrm{C} \\ \left(-148^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 800^{\circ} \mathrm{C} \\ \left(1472^{\circ} \mathrm{F}\right) \end{gathered}$
0-20	Linear current 0-20mA	-1999 1)	9999 1)
4-20	Linear current 4-20 mA	-1999 1)	9999 1)
0-10	Linear voltage $0-10 \mathrm{~V}$	-1999 1)	9999 1)

1) The definition at which the given parameter is shown depends on the parameter of position of the decimal point.

7. CONTROLLER INPUTS AND OUTPUTS

7.1. Main Measuring Inputs

The main input is the source of measured value taking part in control and alarms.

The main input is an universal input, to which one can connect different types of sensors or standard signals. The selection of the input signal type is made by the parameter,$n t s$.
The position of the decimal point which defines the display format of the measured and the set point value is set by the parameter d^{p}. For linear inputs, one must set the indication for the lower and upper analog input threshold, nio o and inh,
The correction of the measured value indication is carried out by the parameter Shir.

7.2. Additional Measuring Inputs

The additional input can be the source of remote set point value (5 P.id set on,$\cap \Omega^{3}$) or the signal for retransmission (RoFn set on Pe?).

The additional input is a linear input. The selection of the input signal type is possible between $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ by the parameter, 2.5 . The position of decimal point which defines the display format of the measured and set point value is set by the parameter $\boldsymbol{o p}^{2} ?^{2}$. One must also set the indication for the lower and upper analog input threshold, 2.20 and 2 Eh .

The signal from the additional input is displayed with the character ", $\sigma^{\prime \prime}$ on the first position. To display the value, one must hold down
\square push-button till the moment of its appearance on the lower display (acc. to the fig. 13.) The return to display the set point value is set by the manufacturer for 30 sec , but it can be changed, or disabled by the parameter cout.

7.3. Binary Inputs

Functions of binary input are set by bne i and bne $?$ parameters. For each input must be set a different function.
Following binary input functions are available:
without functions - the binary input state does not influence the controller operation,

- control stop - the control is interrupted, and control outputs are behaved as after a sensor damage, alarm and retransmission operate independently,
- switching on manual operation - transition to the manual control mode'
switching SP on SP2 - change of the set point value during the control,
erasing of the timer alarm - disabling of the relay responsible for the timer alarm,
program start - the programming control process begins (after a prior set of the programming control),
- jump to the next segment - the transition to the next segment follows, during the duration of the programming control
stoppage to count the set point value in the program the stoppage of set point value counting follows, during the duration of the programming control
- change of the set point value - after the configuration of two inputs, one for decreasing and one for decreasing the set point value, one can replace the change by upward and downward pushbuttons for changing through binary inputs,
switching SP on IN2 - change the set point value during the control between the SP and the value of the additional input (5P.id parameter must be set to $5 \rho, n$, the other binary input cannot have set the function switching SP on SP2).

7.4. Outputs

The controller has four outputs. Each of them can be configured as a control or an alarm output.
For the proportional control (with the exception of analog outputs), the pulse period is set additionally.
The pulse period is the time which goes by between successive switches of the output during the proportional control. The length of the pulse period must be chosen depending on dynamic object properties and suitably for the output device. For fast processes, it is recommended to use SSR relays. The relay output is used to steer contactors in slowchanging processes. The application of a high pulse period to steer fastchanging processes can give unwanted effects in the shape of oscillations. In theory, lowest the pulse period, better the control, but for a relay output it can be as large as possible in order to prolong the relay life.

Recommendations concerning the pulse period:
Table 3

Output	Pulse period	Load
Electromagnetic relay	Recommended $>20 \mathrm{~s}$, min. 10 s	$2 \mathrm{~A} / 230 \mathrm{~V}$ a.c.
	$\min .5 \mathrm{~s}$	$1 \mathrm{~A} / 230 \mathrm{~V}$ a.c.
Transistor output	$1 \ldots 3 \mathrm{~s}$	SSR relay

8. CONTROL

8.1. ON-OFF Control

When a great accuracy of temperature control is not required, especially for objects with a great time constant and small delay, one can apply the on-off control with hysteresis. Advantages of this way of control are simplicity and liability, but disadvantage is the appearance of oscillations, even at small hysteresis values.

Output
Switched on

Fig. 16. Operation way of the heating output type

8.2. Innovative SMART PID algorithm

When a high accuracy of the temperature control is required, one must use the PID algorithm.
The applied innovative SMART PID algorithm is characterized by an increased accuracy for a widen class range of controlled objects.
The controller tuning of the object consists on the manual setting of the proportional element value, integration element, differentiation element, or automatically - by means of the auto-tuning function.

8.2.1. Auto-tuning

The controller has the function to select PID settings. These settings ensure in most of case an optimal control.

To begin the auto-tuning, one must transit to the tung (acc. to the fig. 13) and hold down the \checkmark push-button during at least 2 seconds. If the control algorithm is set on on-off or the auto-tuning function is locked, then the tunk message will be hidden.
For the correct execution of the auto-tuning function, the setting of St.io and $5 \varepsilon . h$, parameters is required. One must set the 5 ELio parameter on the value corresponding to the measured value at the switched off control. For object temperature control, one can set $0^{\circ} \mathrm{C}$.
One must set the $5 t \cdot h$, parameter on the value corresponding to the maximum measured value when the control is switched on the full power.

The flickering ST symbol informs about the activity of the auto-tuning function. The duration of auto-tuning depends on dynamic object properties and can last maximally 10 hours. In the middle of the auto-tuning or directly after it, over-regulations can occur, and for this reason, one must set a smaller set point, if it possible.

The auto-tuning is composed of following stages:

- calculation of PID settings and stored them in the non-volatile memory, - beginning of PID control with new settings

$$
\begin{aligned}
& \text { - the error code is on the display, } \\
& \text { one must confirm it, } \\
& \text { - transition to the manual work mode. }
\end{aligned}
$$

The auto-tuning process will be stopped without counting PID settings, if a supply decay occurs or the \longleftarrow. push-button will be pressed. In this case, the control with current PID settings begins.
If the auto-tuning is not achieved with success, the error code acc. to the table 4 will be displayed.
Error codes for auto-tuning
Table 4

Error code	Reason	How to proceed
$E S B:$	P or PD control was selected.	One must select PI, PID control, i.e. the TI element must be higher than zero.
$E S E T$	The set point value is incorrect.	One must change the temperature set-point or parameters st.io, sth. . Set point value should be in the range: (56Lo $+10 \%$ of range $5 t . h-10 \%$ of range) range $=5$ Example: $56: L_{0}=-50^{\circ} \mathrm{C}, 5 t \cdot \mathrm{H}_{1}=100^{\circ} \mathrm{C}$ $\underset{=15^{\circ} \mathrm{C}}{ }=150^{\circ} \mathrm{C}, 10 \%$ of range $=15^{\circ} \mathrm{C}$ set-point value range ($-35^{\circ} \mathrm{C}$... $135^{\circ} \mathrm{C}$)
ES03	The \longleftarrow push-button was pressed.	
$E 584$	The maximal duration time of auto-tuning was exceeded.	Check if the temperature sensor is correctly placed and if
$E S 85$	The waiting time for switching was exceeded.	the set point value is not set too higher for the given object.
$E 506$	The measuring input range was exceeded.	Pay attention for the sensor connection way. Do not allow that an over--regulation could cause the exceeding of the input measuring range.
$E S E S$	Very non-linear object, making impossible to obtain correct PID parameter values, or noises have occurred.	Carry out the auto-tuning again. If that does not help, select manually PID parameters.

8.2.2. Auto-tuning and "Gain Scheduling"

In case, when "Gain Scheduling" is used, one can carry out the auto-tuning in two ways.
The first way consist on choosing a suitable set of PID parameters, in which calculated PID parameters will be stored and realizing the autotuning on the level of the currently chosen set point value for the fixed set point control. One must set the $\boldsymbol{u t y}$ parameter on set, and choose Gset between $P_{1} \sigma^{\prime}$ and $P_{1} \boldsymbol{\sigma}^{\prime \prime}$.
The second way enables the automatic realization of the auto-tuning for all PID sets. One must set the $\sigma \in S$ parameter on 5ρ, and choose the number of PID sets for setting - parameter $6 \operatorname{Sno}$. Set point values for individual PID sets must be give in 59,593 , 593 , 594 parameters, from the lowest to the highest.

8.2.3. Proceeding Way in Case of a Dissatisfying PID Control

The best way to select PID parameters is to change the value into a twice higher or into a twice lower. During changes, one must respect following principles:
a) Oscillations:

- increase the proportional band,
- increase the integration time,
- increase the differentiation time.
b) Over-regulations:
- increase the proportional band,
- increase the differentiation time,
- increase the integration time.
c) Instability:
- increase the proportional band,
- increase the differentiation time.
d) Free jump response:
- decrease the proportional band,
- decrease the integration time.

Run of controlledvalue	Algorithms of controller operations			
	P	PD	P	PID
	Pb §	Pb tdd \downarrow	pb ¢	$\mathrm{Pb} \uparrow \mathrm{ti} \uparrow \mathrm{td} \downarrow$
	Pb §	Pb td $\mathrm{t}^{\text {¢ }}$	Pb ¢ ti ¢	$\mathrm{Pb} \uparrow \mathrm{ti} \uparrow \mathrm{td} \uparrow$
		$\mathrm{Pb} \downarrow \mathrm{td} \downarrow$		Pbl $\mathrm{td} \downarrow$
	Pbl	Pb \downarrow	ti \downarrow	Pbl til

Fig. 17. Way to correct PID parameters.

8.3. Step-by-step control

The controller's step-by-step control algorithm without feedback was changed.
The description is provided below.
The controller offers two algorithms of the step-by-step control for cylinder control:

- with no feedback signal from the valve - opening and closing of the valve is based on PID parameters and control deviation,
- with a feedback signal from the valve positioning device opening and closing of the valve is based on PID parameters, control deviation and valve position read from the additional input.

To select a step-by-step control, set one of the outputs out i...out 4 to 309 and one of the outputs out i...out' to $3: 1$. For the algorithm with no feedback - the parameter $F_{d} 6$ should be set to no, for the algorithm with a feedback - the parameter $F_{d} b$ should be set to $\Psi E S$. Additionally, set the insensitivity range for the set point, in which the valve does not change its position - the parameter Hin and select the set of PID parameters. Auto-tuning algorithm is not available for the step-by-step control.
For the algorithm with feedback signal the parameter , 2.5 i is available, that specifies the state of the valve when the feedback signal error on the secondary auxiliary input.

Step-by-step control with no feedback additionally requires the parameters settings: valve open time ε ñ.uo, valve close time ε हive, minimum valve work time inc.u.

Fig. 18. Three-step step-by-step control with no feedback

The principle of the algorithm shown in Fig. 18 is based on conversion of changing the control signal to the relay opening / closing time referred to the full opening / closing time.
The differences between the calculated and the actual valve position are unavoidable because of multiple changes in the direction of valve movement due to the inertia of a drive or its wear in the absence of a feedback. The controller uses the function of automatic positioning of a drive during operation to eliminate these differences. This function does not require user intervention and its function is to extend switching on time of the relay when the control signal reaches 0% or 100%.

The relay for opening / closing will remain on for a time equal to the time of a valve full open / close from a moment of a signal reaching 100% / 0%. The positioning of the valve will be stopped once the signal is different from the maximum value.
In the specific case, the positioning is performed by completely closing the valve, it is carried out each time after:

- turning the controller supply on
- changing full open / close time.

The time of full opening of the valve can have a different value than the time of closing.
Both parameters should be set to the same value when using a drive with identical times.

8.4. "Gain Scheduling" Function

For control systems, Where the object behaves decidedly differently in various temperatures, it is recommended to use the "Gain Scheduling" function. The controller allows to remember up to four sets of PID parameters and switch them over automatically. The switching between PID sets runs percussiveless and with hysteresis, in order to eliminate oscillations on switching limits.
The $6 \in \leftrightarrows$ parameter settles the way of the function operation.

off	The function is disabled
59	a) Switching depending on the set point value. Additionally, one must also choose the number of PID sets - E.5nb, parameter, and set their switching levels $6 i: 2,4,23,6: 34$. b) b) For the programmed control, one can set the PID set individually for each segment. Then for the given Prnn, program, in the PCG group, one must set the P_{1} ó parameter on on.
sec	Permanently setting of one PID set. The PID set is set through the G5Et parameter.

Fig 19. "Gain Scheduling" switched over from SP

Fig. 20. "Gain Scheduling" switched over for each segment in the programmed control

8.5. Control of Heating-cooling Type

For the heating-cooling control, one of the outputs out :...out' should be set to Ψ, one of the outputs out :...out'4 should be set to $C o o l$ and the displacement zone Hin for cooling should be configured.

For the heating loop, the PID parameters should be configured: $P_{b}, \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \boldsymbol{\sigma}$, for the cooling loop the PID parameters: $\mathrm{Pb}, \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}, \boldsymbol{\varepsilon} \boldsymbol{\sigma} \mathbf{C}$. The parameter $\mathrm{P}_{\mathrm{b}} \mathrm{C}$ is defined as the ratio of the O parameter from the range 0.1...200.0 \%.

The pulse period for logic outputs (relay, SSR) is set independently for the heating and cooling loops (depending on the output, these are to i...とоч).

If there is the need to use the PID control in one loop and the ON-OFF control in the other loop, one output should be set to PID control and the other one upper relative alarm.

Fig.21. Control with two loops - heating-cooling type

9. ALARMS

Four alarms are available in the controller, which can be assigned: to each output. The alarm configuration requires the selection of the alarm kind through setting out \mathbf{i}, oute, out 3 and out 4 parameters on the suitable type of alarm. Available types of alarms are given on the fig. 22.

Relative lower [duio]

Relative internal [luen n]

Relative external [owou]

Fig. 22. Kinds of alarms

The set point value for absolute alarms is the value defined by the $\boldsymbol{R} .5 \boldsymbol{\rho}$, parameter, and for relative alarms, it is the deviation from the set point value in the main loop - Sx.d'w parameter. The alarm hysteresis, i.e. the zone around the set point value, in which the output state is not changed, is defined by the Ax. H 'l parameter.

One can set the alarm latch, i.e. the memorizing of the alarm state after stopping alarm conditions (parameter $\boldsymbol{\operatorname { X x } . i t = o n}$). The erasing of alarm memory can be made by the pressure of the $\longrightarrow \longleftarrow$ push-button in the normal working mode or interface.

10. TIMER FUNCTION

When reaching the set point temperature (SP) the timer begins the countdown of the time defined by the $\varepsilon, n \in$ time parameter. After counting down to zero, the timer alarm is set, which remains active till the moment of the timer erasing.

To activate the timer function, one must set the parameter $\varepsilon \cdot$ ir $=$ on. To indicate the alarm state on an output, one of the outputs out i...out 3 should be set to Ritrr.

The timer status/ remaining time is displayed with the mark " ε " on the first position. To display it, one must press the
 push-button till the moment of it appearance on the lower display (acc. to the fig. 13).
The return to the set point value display is set by the manufacturer on 30 sec , but can be changed, or disabled using the tout parameter.

Status	Description	Signaling
timer stopped		$\boldsymbol{E - -}$
Starting of the timer	- temperature over SP - Press the ∇ push-button	Remaining time in minutes: e.g. (tこ299)
Pause of the timer	Press the \checkmark push-button	Flickering remaining time in minutes
End of the countdown	Reaching zero by the timer	EEnd
Timer erasing	During the countdown: Press and \square push- buttons After the countdown end: - press the \square push-button - through the binary input	

Fig.23. Principle of timer operation

11. CURRENT TRANSFORMER INPUT

After connecting the current transformer (CT-94-1 type), the measurement and display of the current flowing through the load steered by the output 1 , is possible.
The first output must be of relay or voltage $0 / 5 \mathrm{~V}$ type. For the current counting, the minimal time of the output switching on must be at least 200 ms .

The transformer work range is equal 0 to 50 A . The heater current is displayed with the mark ${ }^{\prime}, \beta^{\prime \prime}$ in the first position.

In order to display the heater current, one must press the \longleftarrow push-button till the moment of it appearance on the lower display. The return to the set point value display in set by the manufacturer on 30 sec , but can be changed or disabled through the cout parameter.

Two types of alarms concerning the heating element are available - the shorting alarm of the control element and the heater burnout alarm. The shorting alarm is realized by the current measurement when the control element is disabled, however the burnout alarm is realized when the control element is enabled.

The alarm configuration includes setting the alarm type. For the heater damage alarm oute...out $4=$ RLins, and for the controlling element damage alarm oute ... out $4=R 1.05$. Remaining parameters to set are the alarm set point value ho.5P, o.5.5P and the hons, os.rs hysteresis.

For a correct detection of the heater alarm burnout, the heating element cannot be connected later than the controller.

12. ADDITIONAL FUNCTIONS

12.1. Control Signal Monitoring

The control signal of heating type is displayed with the mark "h" on the first position, of cooling type is displayed with the mark ,"", of valve opening or closing is displayed with the mark "u". The access to the control signal depends on the suitable controller configuration. To display the control signal, one must press the \downarrow push-button till the moment of its appearance on the lower display (acc. to the fig. 13). The return to the set point value display is set by the manufacturer on 30 sec. but it can be changed, or disabled through the tout parameter.

12.2. Manual Control

The input to the manual control mode follows after holding down the \longleftarrow, push-button during the control signal display. The manual control is signaled by the pulsation of the LED diode. The controller interrupts the automatic control and begins the manual control of the output. The control signal value is on the lower display, preceded by the symbol th" - for the main loop and „[" - for the auxidiary loop (cooling).

The \square push-button serves to transit between loops (if the heating - cooling control mode is selected).

The $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ push-buttons serve to change the control signal. The exit to the normal working mode follows after the pressure of \qquad push-button.

At set on-off control on the output 1 (parameter $\mathrm{PB}=0$), one can set the control signal on 0% or 100% of the power, however when the PB parameter is higher than zero, one can set the control signal on any value from the range $0 . . .100 \%$.

12.3. Signal Retransmission

The continuous output can be used for the retransmission of selected value, e.g. in order to the temperature recording in the object or the set point value duplication in multi-zone furnaces.

The signal retransmission is possible if the output 1 or 2 is of continuous type. We begin the signal retransmission from setting the out i or out? parameter into retr. Additionally, one must set the upper and lower limit of the signal to be retransmitted (Roto and Roh,). The signal selection for retransmission is carried out through the Rofon parameter.

The recounting method of the retransmitted parameter into a suitable analog signal is shown on the fig. 24.

Fig. 24. Recounting of the signal for retransmission

The output signal is calculated acc. to the following formula.

$$
\text { out }_{x}=\text { out }_{\min }+(x-\text { Ao.Lo }) \frac{\text { out }_{\max }-\text { out }_{\min }}{\text { Ao.Lo-Ao.Hi}}
$$

The 9 parameter can be set as higher than Boin, but the output signal will be then inversed.

12.4. Set Point Change Rate - Soft Start

The limitation of the temperature accretion rate is carried out through the gradually change of the set point value. This function is activated after the controller supply connection and during the change of the set point value. This function allows to reach softly from the actual temperature to the set point value. One must write the accretion value in the SPrr, parameter and the time unit in the r-8is parameter. The accretion rate equals zero means that the soft start is disabled.

12.5. Digital Filter

In case when the measured value is instable, one can connect a programmed low-pass filter.
One must set the lowest time constant of the filter at which the measured value is stable. A high time constant can cause a control instability. One can set the filter time constant $F, i t$ from 0.2 up to 100 seconds.

Fig. 25. Time characteristic of the filter

12.6. Manufacturer's Settings

Manufacturer's settings can be restored during the supply connection by holding down \square and \square push-buttons, till the moment when the firbr inscription appears on the higher display.

13．PROGRAMMING CONTROL

13．1．Description of Programming Control Parameters

List of configuration parameters

Table 5

Pre－Programming control						
$\operatorname{Pr} 0:$	Sub－menu of the program no 1					
Or is	Sub－menu of the program no 15					
	PLFE	Sub－menu of program parameters				
			Parameter description		Range of parameter change	
					Sensors	Linear input
		Stre	Way to begin the program	P_{4}	5PG：from the way defined by SP0 P_{u} ：from the way defined by SP0	
		590	Initial set point value	$0.0{ }^{\circ} \mathrm{C}$	MIN．．．MAX ${ }^{1)}$	
		をヒ̇uด	Unit for the segment duration time		nin．55：minutes and seconds нн．пи：hours and minutes	
		rrun	Unit for the accretion rate of the set point value	\therefore 糹。	Ar n ：minutes Howr ：hours	
		hoid	Locking of the control deviation	d． 5	d．5：inactive to：lower h．：upper bRind：reversible	
		E3E．n	Number of program repetition	1	1．．． 999	

		FR, :	Control after the supply decay	Cont	Cont: program continuation Stop: control stoppage and setting the steering signal on control output with the value from parameter $F P$ it
		End	Control on the program end	5609	Sto P: Control stoppage and setting the steering signal on control output with the value from parameter $F 8$ it L.5.0: fixed set point control with set point from the last segment. $\varepsilon .5 \rho$: fixed set point control with set point from ε_{-}s? $5 P$ i 2 : fixed set point control with set point from 5ρ or 592
		E. 59	Set point value for the control after the program is completed	$0,0^{\circ} \mathrm{C}$	MIN...MAX ${ }^{1)}$
		Pr d	"Gain Scheduling" function for the program	off	off: disabled on: enabled
	5t.0:	Submenu of program parameters			
	\vdots	Submenu of program parameters			
	St. is	Submenu of program parameters			

			Parameter description		Range of parameter change	
					sensors	linear input
		GYPE	Kind of segment	と,	$\varepsilon, ~ i \varepsilon$: segment defined by the time r $8 t \varepsilon$: segment defined by the accretion duEi: set point withstand End: program end	
		6.59	Set point on the segment end	$0.0{ }^{\circ} \mathrm{C}$	MIN...MAX ${ }^{1)}$	
		$\varepsilon, ~ B E$	Segment duration	00.01	00.01...99.59 ${ }^{2)}$	
		rr	Accretion rate of the set point	0.1	0.1..550.0 ${ }^{\circ} \mathrm{C} /$ time unit ${ }^{4)}$ (0.1... 990.0 ${ }^{\circ} \mathrm{F}$ / time unit	$\begin{aligned} & 1 . .5500{ }^{\circ} \mathrm{C}^{3)} / \\ & \text { time unit }{ }^{4)} \\ & (1 \ldots .9900 \\ & \left.\delta^{\circ}{ }^{3}\right) / \\ & \text { time unit }{ }^{4)} \end{aligned}$
		Hitu	Value of the control deviation for which the counting of set point is interrupted	0.0	$\begin{aligned} & 0.0 \ldots \\ & 200.0^{\circ} \mathrm{C} \\ & \left(0.0 . \ldots{ }^{\circ} \mathrm{F}\right) \\ & 360.0^{\circ} \mathrm{F} \end{aligned}$	
		$\varepsilon_{u}:$	State of the auxiliary output no 1	orf	off: disabled on: enabled	
		$\varepsilon_{u c}$	State of the auxiliary Output no 2	ofr	off: disabled on: enabled	
		$\varepsilon_{4} 3$	State of the auxiliary Output no 3	orf	off: disabled on: enabled	
		ρ, σ	PID set for the segment	P, o'		

1) See table 2.
2) The time unit is defined by the parameter ε niven
3) The resolution to show the given parameter depends on the parameter dP - position of decimal point.
4) The time unit is defined by the parameter r.our

13.2. Definition of Set Point Value Programs

One can define 15 programs. The maximal number of segments in the program is equal to 15 .
To render visible parameters related to the programming control in the menu, the parameter 5Pind must be set on Pre. For each program, one must set parameters given in the submenu of program parameters. For each segment, one must select the kind of segment and next, parameters depending on the kind of segment acc. to the table 6. One must also set the output state (only when out i...out 4 are set to $\left.\varepsilon_{u} i, \varepsilon_{u}{ }^{2}, \varepsilon_{u} 3\right)$ - parameter $\varepsilon_{u}:, \varepsilon_{u}{ }^{2}, \varepsilon_{u} 3$.

List of segment configuration parameters
Table 6

	GYPE $=$ rRt E	GYPE = duE:	cype $=$ End
t.5P	t.5P		
$\varepsilon \cdot n \varepsilon$	rr		
hiou	hidu		

The fig. 26 and the table 7 represent an example of set point value program. It is assumed in the program that the temperature in the object has to increase from the initial temperature in the object up to $800^{\circ} \mathrm{C}$, with the rate of $20^{\circ} \mathrm{C}$ per minute, at the active locking from the deviation.
Next, during 120 minutes, the temperature is maintained (locking disabled), after that, the temperature has to decrease to $50^{\circ} \mathrm{C}$ during 100 minutes (locking disabled). During the object cooling, one must turn on the fan connected to the auxiliary output no 2 (parameter out? set on $\left.\varepsilon_{u} i\right)$.

Fig. 26. Example of program

Parameter values for the example as above.
Table 7

	Parameter	Value	Meaning
PCFE	Stre	Pu	Start to count the set point value from the current temperature
	triun	нн.ani	Time unit: hour, minute
	rrun	动 0	Unit for the accretion rate: minute
	noto	bRind	Locking for the program: active -two-sided
	cycn	1	Number of program repetitions
	FR, $:$	cont	Program continuation after a supply decay
	End	560%	Control stoppage after the program end

5 cti :	ESPE	-REE	Kind of segment: accretion rate
	c.5P	800.0	Target set point value: $800.0{ }^{\circ} \mathrm{C}$
	rr	20.0	Accretion rate $20.0{ }^{\circ} \mathrm{C} /$ minute
	hidu	50.0	Active locking, when the deviation exceeds $50.0^{\circ} \mathrm{C}$
	Eu:	off	Output 2 as the auxiliary output Ev1: disabled
56.02	tgPE	duct	Kind of segment: withstand of set point value
	$\varepsilon \cdot n \varepsilon$	02.00	Segment time 2h00 = 120 minutes
	Eu:	off	Output 2 as the auxiliary output Ev1 - disabled
56.03	ESPE	E, in	Kind of segment: accretion time
	c.5P	50.0	Target set point value: $50.0{ }^{\circ} \mathrm{C}$
	$\varepsilon \cdot n E$	01.40	Segment time 1 $\mathrm{h} 40=100$ minutes
	hidu	0.0	Inactive locking
	Eu:	on	Output 2 as the auxiliary output Ev1: enabled
56.04	ESPE	End	Kind of segment: program end
	Eu:	off	Output 2 as the auxiliary output Ev1: disabled

13.3. Control of the Set Point Value Program

When the 5 Pind parameter is set on Pri, the controller controls the object in compliance with the set point value changing in time acc. to the given program. Before starting the control with the changeable set point value, one must select the required program (parameter ©PrE).
To start the program, one must press \square and \qquad push-buttons when the $5^{6} 0^{\circ}$ or $E n \sigma^{\prime}$ inscription appears on the lower display (fig. 27).
The lighted dot in the right corner of the lower display, means that the programming control is lasting. During the program duration, one can display parameters of the realized program, i.e. program status, program number, number of the operating segment, the number of cycles which still remains to carry out, time which goes by in the segment, time which remained to the end of the segment, time which remained to the program end.
After finishing the program the dot is gone out, or the program is renewed, if the number of the program repetition cyC is higher than 1.
After finishing the control, auxiliary outputs are in the state defined by parameters - output state for the segment set as the program end. When the parameter hoi σ (locking in the program) is set on $\mathbf{i o}, \boldsymbol{h}$ or bRind and the locking value hid in the operating segment is higher than zero then, the size of the control deviation is controlled (set point value minus measured value). For hoi $\sigma=i 0$ the locking is active, when the measured value is below the set point value diminished by the locking value. For hoi $\sigma=h$, the locking is active, when the measured value exceeds the set point value by the locking value. For hoi $\sigma=b$ ind the locking is active, as for the upper and lower locking. If the locking is active then, the counting of the set point value is interrupted, and the dot in the right corner is flickering. The controller controls acc. to the last calculated set point value.

14. RS-485 INTERFACE WITH MODBUS PROTOCOL

14.1. Introduction

The RE82 controller is equipped with a serial interface in RS-485 standard, with implemented asynchronous communication protocol MODBUS.

The list of serial interface parameters for the RE82 controller:

- device address:
- baud rate:
- operating mode:
- information unit:
- data format:
- maximal response time:
- maximal number of registers read out/ written by a single Modbus frame: 116.

The RE82 controller realizes following protocol functions:
Table 8

Code	Meaning
03	read out of n-registers
06	write of 1 register
16	write of n-registers
17	identification of the slave device

14.2. Error Codes

If the controller receives a request with a transmission or checksum error, the request will be ignored. For a request synthetically correct but with incorrect values, the controller will send an answer including the error code.
Possible error codes and their meanings are presented in the table 9.

Error codes
Table 9

Code	Meaning	Reason
01	forbidden function	The function is not serviced by the controller.
02	forbidden data address	The register address is beyond the range.
03	forbidden data value	The register value is beyond the range or the register is only to readout.

14.3. Register Map

Map of register groups
Table 10

Range of addresses	Type of values	Description
$4000-4149$	Integer (16 bits)	The value is situated in a 16-bit register
$4150-5899$	Integer (16 bits)	The value is situated in a 16-bit register
$7000-7099$	float (2x16 bits)	The value is situated in two successive $16-$ bit registers; Registers only for readout
$7500-7599$	float (32 bits)	The value is situated in two successive 32 -bit registers; Registers only for readout

In the controller, data are situated in 16-bit registers. The list of registers for write and readout is presented in the table 11.
Operation „R-" - means the possibility of readout, and the operation „RW" means the possibility for readout and write.

Map of register from address 4000
Table 11

| | | | |
| :--- | :--- | :---: | :---: | :--- |

4003		R-	0...0xFFFF	Controller status - description in table 12
4004		R -	0...0xFFFF	Alarm state - description in table 13
4005		R-	0...0xFFFF	Error status - Description in table 14
4006		R -	acc. to table $17^{1)}$	Measured value PV
4007		R-	-1999... 9999	Measured value on additional input
4008		R -	acc. to table $17^{1)}$	Current set point value SP
4009		RW	0... 1000	Control signal of loop 1 [\% x10] ${ }^{\text {2) }}$
4010		RW	0... 1000	Control signal of loop 2 [$\% \times 10]^{2)}$
4011		R -	0... 59994	Timer value [s]
4012		R -	0... 500	Heater current when the output is turned on [A x10]
4013		R-	$0 . . .500$	Heater current when the output is turned off [A x10]
4014	UNIT	RW	$0 \ldots 2$	Unit: 0 - Celsius degrees 1 - Fahrenheit degrees 2 - physical units
4015	INPT	RW	0... 14	Kind of main input: 0 - resistance thermometer Pt 100 1 - resistance thermometer Pt1000 2 - thermocouple of J type 3 - thermocouple of T type 4 - thermocouple of K type 5 - thermocouple of S type 6 - thermocouple of R type 7 - thermocouple of B type 8 - thermocouple of E type 9 - thermocouple on N type 10 - thermocouple of L type 11 - current input: 0-20mA 12 - current input: 4-20mA 13 - voltage input: 0-5 V 14 - voltage input: $0-10 \mathrm{~V}$

4016	DP	RW	$\begin{gathered} 0 \ldots 1^{3) 4)} \\ 0 \ldots 2^{5)} \end{gathered}$	Position of the decimal point of the main input: 0 - without decimal place 1-1 decimal place 2-2 decimal places
4017	INLO	RW	-999...9999 ${ }^{1)}$	Indication for the lower threshold of the analog main input.
4018	INHI	RW	-999... $9999{ }^{1)}$	Indication for the upper threshold of the analog main input.
4019	SHIF	RW	-999...999 ${ }^{1)}$	Shift of the measured value of the main input.
4020	I2TY	RW	$0 \ldots 1$	Kind of the additional input: 0 - current inpur: $0-20 \mathrm{~mA}$ 1 - current input: 4-20mA
4021	DP2	RW	$0 \ldots .2$	Position of the decimal point of the additional input: 0 - without a decimal place 1-1 decimal place 2-2 decimal places
4022	I2LO	RW	-999... $9999{ }^{1)}$	Indication for the lower threshold of the analog main input.
4023	12 HI	RW	-999... $9999{ }^{1)}$	Indication for the upper threshold of the analog main input.
4024	FILT	RW	$0 . . .9$	Time constant of the filter: $\begin{aligned} & 0-O F F \\ & 1-0.2 \mathrm{sec} \\ & 2-0.5 \mathrm{sec} \\ & 3-1 \mathrm{sec} \\ & 4-2 \mathrm{sec} \\ & 5-5 \mathrm{sec} \\ & 6-10 \mathrm{sec} \\ & 7-20 \mathrm{sec} \\ & 8-50 \mathrm{sec} \\ & 9-100 \mathrm{sec} \end{aligned}$

4025	BNI1	RW	0... 10	Function of the binary input 1 0 - none 1 - control stop 2 - switching on manual control 3 - SP1 switching into SP2 4 - erasing of the timer alarm 5 - program start 6 - jump to the next segment 7 - stoppage of set point value counting in the program 8 - decrease of the set point value 9 - increase of the set point value 10 - switching SP on the additional input value
4026	BNI2	RW	0... 10	Function of the binary input 2 0 - none 1 - control stop 2 - switching on manual control 3 - SP1 switching into SP2 4 - erasing of the timer alarm 5 - program start 6 - jump to the next segment 7 - stoppage of set point value counting in the program 8 - decrease of the set point value 9 - increase of the set point value 10 - switching SP on the additional input value
4027	OUT1	RW	0... 16	Function of output 1: 0 - without function 1 - control signal - heating or control signal „opening" for analog valve 2 - control signal of stepper control - opening ${ }^{7)}$ 3 - control signal of stepper control - closing ${ }^{7)}$ 4 - control signal - cooling or control signal "closing" for analog valve 5 - absolute upper alarm 6 - absolute lower alarm 7 - relative upper alarm 8 - relative lower alarm 9 - relative internal alarm 10 - relative external alarm 11 - timer alarm 12 - retransmission 8) 13 - auxiliary output EV1 in the programming control 14 - auxiliary output EV2 in the programming control

				15 - auxiliary output EV3 in the programming control 16 - alarm in case of sensor failure or exceeding the measuring range
4028	O1TY	R	1... 6	Output 1 type: 1 - relay output 2 - voltage output: $0 / 5 \mathrm{~V}$ 3 - current output : 4-20 mA 4 - current output : 0-20 mA 5 - reserved 6 - voltage output:: $0-10 \mathrm{~V}$
		RW	$3 . . .4{ }^{6}$	
4029	YFL	RW	0... 1000	Value of the control signal in case when $F R: i t=Y F i$
4030	OUT2	RW	0... 18	Function of output 2: 0 - without function 1 - control signal - heating or control signal „opening" for analog valve 2 - control signal of stepper control - opening ${ }^{7)}$ 3 - control signal of stepper control - closing ${ }^{7}$) 4 - control signal - cooling or control signal „closing" for analog valve 5 - absolute upper alarm 6 - absolute lower alarm 7 - relative upper alarm 8 - relative lower alarm 9 - relative internal alarm 10 - relative external alarm 11 - timer alarm 12 - alarm of heater burnout 13 - controlling element damage alarm (short - circuit) 14 - retransmission 8) 15 - auxiliary output EV1 in the programming control 16 - auxiliary output EV2 in the programming control 17 - auxiliary output EV3 in the programming control 18 - alarm in case of sensor failure or exceeding the measuring range

4031	O2TY	R RW	$0 . .6$ $3 . . .4{ }^{6)}$	Output 2 type: 0 - without relay 1 - relay soutput 2 - voltage output: $0 / 5 \mathrm{~V}$ 3 - current output : 4-20 mA 4 - current output : $0-20 \mathrm{~mA}$ 5 - voltage output: $0-5 \mathrm{~V}$ 6 - voltage output:: $0-10 \mathrm{~V}$
4032	OUT3	RW	0... 17	Function of output 3: 0 - without function 1 - control signal - heating or control signal „opening" for analog valve 2 - control signal of stepper control - opening 7) 3 - control signal of stepper control - closing 7) 4 - control signal - cooling or control signal „closing" for analog valve 5 - absolute upper alarm 6 - absolute lower alarm 7 - relative upper alarm 8 - relative lower alarm 9 - relative internal alarm 10 - relative external alarm 11 - timer alarm 12 - alarm of heater burnout 13 - controlling element damage alarm (short- circuit) 14 - auxiliary output EV1 in the programming control 15 - auxiliary output EV2 in the programming control 16 - auxiliary output EV3 in the programming control 17 - alarm in case of sensor failure or exceeding the measuring range
4033	OUT4	RW	0... 17	Function of output 4: 0 - without function 1 - control signal - heating or control signal „opening" for analog valve 2 - control signal of stepper control - opening 7 7) 3 - control signal of stepper control - closing 7) 4 - control signal - cooling or control signal „closing" for analog valve 5 - absolute upper alarm 6 - absolute lower alarm

				7-relative upper alarm $8-$ relative lower alarm $9-$ relative internal alarm $10-$ relative external alarm $11-$ timer alarm $12-$ alarm of heater burnout $13-$ controlling element damage alarm (short - circuit)

4042	GSET	RW	0...3	Selection of the constant PID set $0 \text { - PID1 }$ 1 - PID2 2 - PID3 3 - PID4
4043	PB	RW	0...9999 ${ }^{1)}$	Proportional band PB
4044	TI	RW	0... 9999	Integration time constant TI [s]
4045	TD	RW	0...9999	Differentiation time constant TD [s x10]
4046	Y0	RW	0... 1000	Correction of control signal (for P or PD control) [\% x10]
4047	PB2	RW	0...9999 ${ }^{\text {1) }}$	Proportional band PB2
4048	TI2	RW	0... 9999	Integration time constant TI2 [s]
4049	TD2	RW	0... 9999	Differentiation time constant TD2 [s x10]
4050	Y02	RW	0... 1000	Correction of control signal (for P or PD control) [\% x10]
4051	PB3	RW	0...9999 ${ }^{1)}$	Proportional band PB3
4052	TI3	RW	0... 9999	Integration time constant TI3 [s]
4053	TD3	RW	0... 9999	Differentiation time constant TD3 [s x10]
4054	Y03	RW	0... 1000	Correction of control signal (for P or PD control) [\% x10]
4055	PB4	RW	0...9999 ${ }^{\text {1) }}$	Proportional band PB4
4056	TI4	RW	0... 9999	Integration time constant TI4 [s]
4057	TD4	RW	0... 9999	Differentiation time constant TD4 [s x10]
4058	Y04	RW	0... 1000	Correction of control signal (for P or PD control) [\% x10]
4059	TO1	RW	5... 999	Pulse period of output 1 [x 10]
4060	HN	RW	0...999 1)	Displacement zone for heating-cooling control or dead zone for stepper control

4061	PBC	RW	1... 2000	Proportional band PBC [\% x10] (in relation to PB)
4062	TIC	RW	0... 9999	Integration time constant TIC [s]
4063	TDC	RW	0...9999	Differentiation time constant TDC [s]
4064	TO2	RW	5... 999	Pulse period of output 2 [$\mathrm{s} \times 10$]
4065	A1SP	RW	$\begin{gathered} \text { acc. to table } \\ 17^{1)} \end{gathered}$	Set point value for absolute alarm 1
4066	A1DV	RW	-1999...1999 ${ }^{\text {1) }}$	Deviation from the set point value for relative alarm 1
4067	A1HY	RW	2... $999{ }^{1)}$	Hysteresis for alarm 1
4068	A1LT	RW	0... 1	Memory of alarm 1 0 - disabled 1 - enabled
4069	A2SP	RW	acc. to table 171)	Set point value for absolute alarm 2
4070	A2DV	RW	-1999...1999 ${ }^{1}$	Deviation from the set point value for relative alarm 2
4071	A2HY	RW	2...999 ${ }^{1)}$	Hysteresis for alarm 2
4072	A2LT	RW	$0 . . .1$	Memory of alarm 2 0 - disabled 1 - enabled
4073	A3SP	RW	acc. to table $17^{1)}$	Set point value for absolute alarm 3
4074	A3DV	RW	-1999...1999 ${ }^{1}$	Deviation from the set point value for relative alarm 3
4075	A3HY	RW	2...999 ${ }^{1)}$	Hysteresis for alarm 3
4076	A3LT	RW	0... 1	Memory of alarm 3 0 - disabled 1 - enabled
4077	A4SP	RW	acc. to table $17^{1)}$	Set point value for absolute alarm 4

4078	A4DV	RW	-1999...1999 ${ }^{1)}$	Deviation from the set point value for relative alarm 4
4079	A4HY	RW	2...999 ${ }^{1)}$	Hysteresis for alarm 4
4080	A4LT	RW	0... 1	Memory of alarm 4 0 - disabled 1 - enabled
4081	HBSP	RW	0... 500	Set point value for the heater damage alarm [Ax10]
4082	HBHY	RW	0... 500	Hysteresis for the heater damage alarm [Ax10]
4083	SPMD	RW	0... 5	Kind of set point value: 0 - set point value SP or SP2 1 - set point value with soft start in units per minute 2 - set point value with soft start in units per hour 3 - set point value from the additional input 4 - Set point value acc. to the programming control 5 - set point value SP or from the additional input
4084	SP	RW	acc.totable 171)	Set point value SP
4085	SP2	RW	aoc. totable 17 ${ }^{1}$)	Set point value SP2
4086	SP3	RW	acc.totable 171)	Set point value SP3
4087	SP4	RW	acc. totable171)	Set point value SP4
4088	SPLL	RW	acc. totable17 ${ }^{1)}$	Lower limitation of the fast set point value change
4089	SPLH	RW	acc. totable17 ${ }^{1}$)	Upper limitation of the fast set point value change
4090	SPRR	R	0...9999 ${ }^{1)}$	Accretion rate of the set point value SP1 or SP2 during the soft start
4091	ADDR	RW	1... 247	Device address

4092	BAUD	RW	0... 4	Baud rate: 0-4800 1-9600 2-19200 3-38400 4-57600
4093	PROT	RW	0... 4	Protocol: 0 - none 1-RTU 8N2 2 - RTU 8E1 3 - RTU 801 4 - RTU 8N1
4094	-	RW	0... 65535	Reserved
4095	AOFN	RW	0... 5	Quantity retransmitted on the main input: 0 - measured value on the main input PV 1 - measured value on the additional input PV2 2 - measured value PV - PV2 3 - measured value PV2 - PV 4 - set point value 5 - deviation (set point value measured value PV)
4096	AOLO	RW	acc. totable 17 ${ }^{1 \text { () }}$	Lower limit of signal for retransmission
4097	AOHI	RW	aoc. totable 17 ${ }^{1 \text {) }}$	Upper limit of signal for retransmission
4098	SECU	RW	0...9999	Access code to the menu
4099	STFN	RW	0... 1	Auto-tuning function: 0 - locked 1 - unlocked
4100	STLO	RW	acc. totable 17 ${ }^{1 \text {) }}$	Lower limit of signal for retransmission
4101	STHI	RW	acc. totable 17 ${ }^{1}$)	Upper limit of signal for retransmission
4102	TOUT	RW	0... 250	Time of automatic output from the monitoring mode

4103	TIMR	RW	0... 1	Timer function: 0 - disabled 1 - enabled
4104	TIME	RW	1.. 9999	Time counted down by the timer [$\min \times 10$]
4105	DI2	RW	0... 1	Monitoring of the auxiliary input: 0 - disabled 1 - enabled
4106	DCT	RW	0... 1	Monitoring of heater current: 0 - disabled 1 - enabled
4107	BAR1	RW	0... 6	Function of the upper bargraph: 0 - measured value on the main input PV 1 - measured value on the additional input PV2 2 - set point value 3 - control signal on the output 1 4 - control signal on the output 2 5 - segment time 6 - program time
4108	BAR2	RW	0... 6	Function of the upper bargraph: 0 - measured value on the main input PV 1 - measured value on the additional input PV2 2 - set point value 3 - control signal on the output 1 4 - control signal on the output 2 5 - segment time 6 - program time
4109	BARL	RW	acc. totable $17^{1)}$	Lower threshold for bargraphs
4110	BARH	RW	acc. totable $17^{1)}$	Upper threshold for bargraphs
4111	TO3	RW	5... 999	Pulse period of output 3 [$\mathrm{x} \times 10$]
4112	TO4	RW	5... 999	Pulse period of output 4 [$\mathrm{x} \times 10$]

4113	FDB	RW	0... 1	Algorithm for stepper control 0 - without feedback 1 - with feedback
4114	OSSP	RW	0... 500	Set point for the controlling element damage alarm (short- circuit) [Ax10]
4115	OSHY	RW	0... 500	Hysteresis for the controlling element damage alarm (short-circuit) [Ax10]
4116	TMVO	RW	30... 6000	Valve open time [$\mathrm{s} \times 10$]
4117	TMVC	RW	30... 6000	Valve close time [$\mathrm{s} \times 10$]
4118	MNTV	RW	1... 999	Minimum valve work time [s $\times 10$]
4119	YLO	RW	0... 1000	Minimum control signal [\% x10]
4120	YHI	RW	0... 1000	Maximum control signal [\% x10]
4121	I2FL	RW	0... 2	State of the valve when auxiliary input error 0 - valve closing 1 - valve opening 2 - valve position unchanged
4122	FAIL	RW	0... 2	Selection of the control signal of the output for proportional control in case of a sensor failure or for program control in case of control stoppage ${ }^{9)}$ 0 - the output is turned off 1 - the output takes the value set with the SFL parameter 2 - the output takes the mean value. The maximum allowable value of the control signal at the output can be defined with the Sint parameter. The mean value is measured at 1-minute intervals and only when the system deviation is lower than the i.Si parameter value.
4123	Y_mH	RW	0... 1000	Upper mean value limit
4124	L_Ym	RW	0... 9999	Maximum system deviation when calculating mean value

${ }^{1)}$ Value with the decimal point position defined by bits 0 and 1 in the register 4003.
${ }^{2)}$) Parameter to write only in the manual operating mode
${ }^{3)}$ Concerns resistance thermometer inputs
${ }^{4)}$ Concerns thermocouple inputs
${ }^{5)}$ Concerns linear inputs
${ }^{6)}$) Range to write for continuous current outputs
${ }^{7)}$ Concerns output 1 of binary type
${ }^{8)}$ Concerns output 1 of continuous type.
9) For control P: $\mathrm{C}=$ onoF and $\mathrm{SFL}<=50 \%$, control signal $\mathrm{h}=0 \%$, SF: > 50\%, control signal h=100\%.

Register 4003 - controller status
Table 12

bit	Description
0-1	Decimal point position for MODBUS registers from address 4000, depending on the input ($0 \ldots 2)^{1)}$
2-3	Decimal point position for MODBUS registers from address 4000, depending on the additional input ($0 . . .2)^{1}$)
4	Auto-tuning finished with failure
5	Soft start: 1 - active, 0 - inactive
6	Timer status: 1 - countdown finished, 0 - remaining states
7	Automatic control/manual: 0 - auto, 1 - manual
8	Auto-tuning: 1 - active, 0 - inactive
9-10	Current set of PID parameters $0 \text { - PID1, } 1 \text { - PID2, } 3 \text { - PID3, } 4 \text { - PID4 }$
11-12	Reserved
13	Measured value beyond the measuring range
14	Measured value on the additional input beyond the measuring input
15	Controller error - check the error register

${ }^{1)}$ For sensor inputs value equal 1 , for linear inputs the value is depended on the parameter dp (register 4023)

Bit	Description
0	State of alarm 1.:1-active, 0 - inactive
1	State of alarm 2.:1-active, 0 - inactive
2	State of alarm 3.:1-active, 0 - inactive
3	State of alarm 4.:1-active, 0 - inactive
4	Alarm state of heater burnout
5	Alarm state of permanent output 1 shorting:1-active , 0 - inactive
6	State of the digital input 1: 1 - (terminal 10 of the controller connected with terminal 11) ${ }^{1)}$
7	State of the digital input 2: 1 - (terminal 12 of the controller connected with terminal 13) ${ }^{1)}$
8	State of the digital input 1: 1 - output is active, 0 - output is inactive1)
9	State of the digital input 2: 1 - output is active, 0 - output is inactive1)
10	State of the digital output 3: 1-output is active, 0 - output is inactive
11	State of the digital output 4: 1-output is active, 0 - output is inactive
12... 15	Reserved

${ }^{1)}$ in models without the digital input the value equals 0

Bit	Description
0	Discalibrated input
1	Discalibrated additional input
2	Discalibrated analog output 1
3	Discalibrated analog output 2
$4-14$	Reserved
15	Checksum error of controller memory

	$\begin{aligned} & \text { 이 } \\ & \text { 든 } \\ & \text { (} \end{aligned}$	$\begin{aligned} & \text { ᄃ 으 } \\ & \text { 든 } \\ & \text { © } \\ & \hline 0 \end{aligned}$		Description
4150		RW	0... 14	Program number for realization (0 - means first program)
4151		RW	0... 1	Program start/stop: 0 - program stop 1 - program start (the write causes the program start from the beginning)
4152		RW	0... 1	Stoppage of set point value counting in the program: 0 - disabled 1 - enabled
4153		RW	0... 14	Realized segment (0 - means the first program) The write causes the jump to the given segment.
4154		R-		Control status: 0 - control stop 1 - program in progress 2 - active locking from the control deviation 3 - Stoppage of set point value counting (by the push-button, binary input or interface) 4 - program end
4155		R-		Number of cycles which remains to the end
4156		R-		Time which goes out in the segment LSB [s]
4157		R-		Time which goes out in the segment MSB [s]
4158		R-		Time to the segment end LSB [s]

4277			TYPE	RW	0... 3	Kind of segment
4278			TSP	RW	$\begin{gathered} \text { wg tablicy } \\ 17 \end{gathered}$	Set point value on the segment end
4279			TIME	RW	0... 5999	Segment duration
4280			RR	RW	1...5500 ${ }^{\text {1) }}$	Accretion rate of the set point value
4281			HLDV	RW	$0 . . .2000{ }^{1)}$	Control deviation value, over which the set point value counting is interrupted
4282				RW	0...3	State of auxiliary outputs
4283			PID	RW	0... 3	PID set for the segment
		\ldots				
5766	(STRT	RW	0... 1	Way of program beginning
5767			SP0	RW	$\begin{gathered} \text { acc. to } \\ \text { table 17 } \end{gathered}$	Initial set point value
5768			TMUN	RW	0... 1	Unit for the segment duration
5769			RRUN	RW	0... 1	Unit for the accretion rate of the set point value
5770			HOLD	RW	0... 3	Blockings of the control deviation
5771			CYCN	RW	1... 999	Number of program repetitions
5772			FAIL	RW	0... 1	Way of the controller behaviour after a supply decay.
5773			END	RW	0... 1	Way of the controller behaviour on the program end
5774			PID	RW	0... 1	"Gain Scheduling " function for the program
5775			TYPE	RW	0... 3	Kind of segment
5776			TSP	RW	$\begin{aligned} & \text { acc. to } \\ & \text { table 171) } \end{aligned}$	Set point value on the segment end
5777			TIME	RW	0... 5999	Segment duration
5778			RR	RW	1...55001)	Accretion rate of the set point value

5779		HLDV	RW	0...2000 ${ }^{1)}$	Control deviation value, over which the counting of the set point value is interrupted
5780			RW	0... 3	State of auxiliary outputs
5781		PID	RW	0... 3	PID set for the segment
...					...
5873		TYPE	RW	0... 3	Kind of segment
5874		TSP	RW	$\begin{aligned} & \text { acc. to } \\ & \text { table } \\ & 17^{11} \end{aligned}$	Set point value on the segment end
5875		TIME	RW	0...5999	Segment duration
5876		RR	RW	1...5500 ${ }^{1)}$	Accretion rate of the set point value
5877		HLDV	RW	0...2000 ${ }^{1)}$	Control deviation value, over which the counting of the set point value is interrupted
5878			RW	0... 3	State of auxiliary outputs
5879		PID	RW	0... 3	PID set for the segment
5880	$\begin{aligned} & \text { Pro- } \\ & \text { gram1 } \end{aligned}$	ESP	RW	$\begin{aligned} & \text { acc. to } \\ & \text { table } 17^{1)} \end{aligned}$	Set point value after completing the program 1
5881	$\begin{gathered} \text { Pro- } \\ \text { gram2 } \end{gathered}$	ESP	RW		Set point value after completing the program 2
5894	$\begin{gathered} \text { Pro- } \\ \text { gram15 } \end{gathered}$	ESP	RW		Set point value after completing the program 15

${ }^{1)}$ Value with the decimal point position defined by bits 0 and 1 in the register 4002

Map of registers from address 7000 and 7500
Table 16

		$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\leftrightharpoons} \\ & \text { n } \end{aligned}$		Description
7000	7500		R-	Measured value PV
7002	7501		R-	Measured value on the additional input
7003	7502		R-	Current set point value SP
7006	7503		R-	Control signal of loop 1
7008	7504		R-	Control signal of loop 2
7010	7505	SP	R-	Set point value SP
7012	7506	SP2	R-	Set ponit value SP2
7014	7507	A1SP	R-	Set point value for the absolute alarm
7016	7508	A1DV	R-	Deviation from the set point value for the relative alarm 1
7018	7509	A2SP	R-	Set point value for the absolute alarm
7020	7510	A2DV	R-	Deviation from the set point value for the relative alarm 2
7022	7511	A3SP	R-	Set point value for the absolute alarm 3
7024	7512	A3DV	R-	Deviation from the set point value for the relative alarm 3
7026	7513	A4SP	R-	Set point value for the absolute alarm 4
7028	7514	A4DV	R-	Deviation from the set point value for the relative alarm 4

Table 17

Kind of sensors	Range		
	UNIT $={ }^{\circ} \mathrm{C}$ $[\times 10]$	UNIT $={ }^{\circ} \mathrm{F}$ $[\times 10]$	UNIT $=$ PU
Pt100	$-2000 \ldots 8500$	$-3280 \ldots 15620$	
Pt1000	$-2000 \ldots 8500$	$-3280 \ldots 15620$	
Fe-CuNi (J)	$-1000 \ldots 12000$	$-1480 \ldots 21920$	
Cu-CuNi (T)	$-1000 \ldots 4000$	$-1480 \ldots 7520$	
NiCr-NiAI (K)	$-1000 \ldots 13720$	$-1480 \ldots .25016$	
PtRh10-Pt (S)	$0 \ldots 17670$	$320 \ldots 32126$	
PtRh13-Pt (R)	$0 \ldots 17670$	$320 \ldots . .32126$	
PtRh30-PtRh6 (B)	$0 \ldots 17670$	$320 \ldots 32126$	
NiCr-CuNi (E)	$-1000 \ldots 10000$	$-1480 \ldots 18320$	
NiCrSi-NiSi (N)	$-1000 \ldots 13000$	$-1480 \ldots 23720$	
chromel - kopel (L)	$-1000 \ldots 8000$	$-1480 \ldots 14720$	
Linear current (I)			$-1999 \ldots 9999$
Linear current (I)			$-1999 \ldots 9999$
Linear voltage (U)			$-1999 \ldots 9999$
Linear voltage (U)			$-1999 \ldots 9999$

15. SOFTWARE UPDATING

Function enabling updating of software from the computer of the PC with software eCon was implemented in controller RE82 (from version of software 2.00). Free software eCon and update files are available at manufacturer's website. The connected to the computer convertor RS485 is required on USB to the updating, e.g.: the convertor PD10.
a)
b)

Fig.28. Program view: a) eCon, b) updating of software
Warning! Before doing update, currently settings of controller should be saved by program eCon, because when software is updated default settings of controller are restored.

After starting eCon's software COM port, baudrate, transmission mode and adress should be set. It can be done in Communication window. Then, RE82 controller should be selected in the window Select device and push icon Load in window Communication and then the icon § to read the current settings. Open window Lumel Updater (LU) -
figure 28b from Updating firmware. Push Connect. Update progress is shown in Messages section. Text Port opened appear after correctly opened port. Putting controller in update's mode can be done in two ways: remote from LU (with settings from eCon - port, baudrate, transmission mode and adress) or by turning power on while button pressed \longleftarrow. Message boot in the upper display signal the availability to update. LU will show message „Device found" with name and current version of firmware. Using button ... a valid file should be selected. If the file is correct, message File opened will show. Send button should be pressed. During firmware update the leds on the upper bargraph indicate process progress. If firmware update is successful device starts normal operation and message Done and update duration will show. Close LU and next press icon Upload configuration to device to restore previously read parameters. Current firmware version can be checked when controller is power on.

Warning! Power loss during firmware update could result permanent controller damage!

16. ERROR SIGNALING

Error code (upper display)	Reason	Procedure
- - - -	Down overflow of the measuring range or shorting in the sensor circuit.	Check, if the type of chosen sensor is in compliance with the connected one; check, if input signal values are situated in the appropriate range - If yes, check if there is no break in the sensor circuit.
	Upper overflow of the measuring range or break in the sensor circuit.	Check, if the type of chosen sensor is in compliance with the connected one; check, if input signal values are situated in the appropriate range - If yes, check if there is no break in the sensor circuit.
Ers:	Incorrect controller configuration.	After selecting the valve opening on one output, the valve closing should be set on another output.
$E r .8{ }^{3}$	Incorrect controller configuration.	After selecting the cooling type control on one output, the reverse control (heating) and the PID algorithm (ALG=PID) should be set on another output.
ES--	Auto-tuning is ended with failure	Check the reason of the auto--tuning process interruption in the auto-tuning point.

$E r .8$	Input discalibrated	Turn off and turn on again the controller supply, when this not help, contact the nearest service shop.
$E r . E E$	Continuous output discalibrated	Turn off and turn on again the controller supply, when this not help, contact the nearest service shop.
$E=$Error of readout veri- fication from the non- volatile memory.	Turn off and turn on again the controller supply, when this not help, contact the nearest service shop. The controller exploitation in his state can cause its unforeseen behavior.	

17. TECHNICAL DATA

MAIN INPUT

Input signals and measuring ranges
Table19

Sensor type	Standard	Range		¢ हु
Pt100	EN	$-200 . . .850^{\circ} \mathrm{C}$	$-328 . .1562{ }^{\circ} \mathrm{F}$	pt:
Pt1000	60751+A2:1997	$-200 . . .850^{\circ} \mathrm{C}$	$-328 . . .1562{ }^{\circ} \mathrm{F}$	Pt ic
Fe-CuNi (J)	$\begin{gathered} \text { EN 60584- } \\ \text { 1:1997 } \end{gathered}$	$-100 . . .1200^{\circ} \mathrm{C}$	$-148 . .2192{ }^{\circ} \mathrm{F}$	$t-u$
Cu-CuNi (${ }_{\text {I }}$		$-100 . . .400^{\circ} \mathrm{C}$	-148...752 ${ }^{\circ} \mathrm{F}$	$t-t$
NiCr-NiAl (K)		$-100 . . .1372{ }^{\circ} \mathrm{C}$	$-148 \ldots 2501,6^{\circ} \mathrm{F}$	$t-\zeta$
PtRh10-Pt (S)		0... $1767^{\circ} \mathrm{C}$	32...3212,6 ${ }^{\circ} \mathrm{F}$	t-5
PtRh13-Pt (R)		0... $1767^{\circ} \mathrm{C}$	32... $3212,6^{\circ} \mathrm{F}$	$t-r$
PtRh30-PtRh6 (B)		0... $1767^{\circ} \mathrm{C}{ }^{1)}$	$32 . .3212,6^{\circ} \mathrm{F}^{1)}$	$t-b$
NiCr-CuNi (E)		$-100 . . .1000^{\circ} \mathrm{C}$	-148... $1832{ }^{\circ} \mathrm{F}$	$t-\varepsilon$
NiCrSi-NiSi (N)		$-100 . . .1300^{\circ} \mathrm{C}$	$-148 . . .2372{ }^{\circ} \mathrm{F}$	$t-n$
Chromel-Kopel (L)	$\begin{gathered} \text { GOSTR8.585- } \\ 2001 \end{gathered}$	$-100 . . .800^{\circ} \mathrm{C}$	$-148 . .1472{ }^{\circ} \mathrm{F}$	$t-1$
Linear current (I)		$0 . .20 \mathrm{~mA}$	$0 . .20 \mathrm{~mA}$	0-20
Linear current (I)		$4 \ldots .20 \mathrm{~mA}$	$4 \ldots . .20 \mathrm{~mA}$	4-20
Linear voltage (U)		$0 . . .5 \mathrm{~V}$	$0 . . .5 \mathrm{~V}$	0-5
Linear voltage(U)		$0 . . .10 \mathrm{~V}$	$0 . . .10 \mathrm{~V}$	0-10

${ }^{1)}$ The intrinsic error is related to measuring range $200 \ldots 1767{ }^{\circ} \mathrm{C}$ (392...3212,6 ${ }^{\circ} \mathrm{F}$)

Intrinsic error of the real value measurement
0.2%, for resistance thermometer inputs,
0.3%, for inputs for thermocouple sensors (0.5% - for B, R, S);
$0.2 \% \pm 1$ digit, for linear inputs
Current flowing through the resistance thermometer sensor
0.22 mA
Measurement time
0.2 s

Input resistance:

- for voltage input
$150 \mathrm{k} \Omega$
- for current input 50Ω

Error detection in the measuring circuit:

- thermocouple, Pt100, Pt1000
- 0... 10 V
- $0 . . .5 \mathrm{~V}$
- 0... 20 mA
- $4 . . .20 \mathrm{~mA}$
overrun of measuring range over 11 V
over 5.5 V
over 22 mA
over1 mA
and over 22 mA

AUXILIARY INPUT

Measurement basic error of real value
$0.3 \% \pm 1$ digit

Measurement time
0.5 s

Input resistance 100Ω

Setting range of controller parameters:

See table 1

Binary input

- shorting resistance
- opening out resistance

Kinds of outputs 1 and 2:

- voltageless relay
- voltage transistor
- continuous voltage
- continuous current

Kinds of outputs 3 and 4:

- voltageless relay

NO contact, load capacity 1 A/230 V a.c.

Way of output operation:

- reverse	for heating - direct			
for cooling		,	Error of analog outputs	0.2% of the range
:---	:---			
Digital interface	$\mathrm{RS}-485$			
- protocol	Modbus			
- baud rate	$4800,9600,19200,38400$,			
	$57600 \mathrm{bit} / \mathrm{s}$			

94

- mode
- address
- maximal response time

Supply of object transducers

Signaling:

- turning outputs $1,2,3,4$ on
- mode of manual control
- auto-tuning process
- turning binary inputs 1,2 on

Rated operating conditions:

- supply voltage
- frequency of supply voltage
- ambient temperature
- storage temperature
- relative air humidity
- preheating time
- operating position
- resistance of wires connecting the resistance thermometer or the thermocouple with the controller

Power input

Weight

RTU - 8N2, 8E1, 8O1, 8N1
1... 247

500 ms

24 V d.c. $\pm 5 \%$, max.: 30 mA
85... 253 V a.c./d.c.
$20 . . .40 \mathrm{~V}$ a.c./d.c.
$40 \ldots 440 \mathrm{~Hz}$
0...23... $50^{\circ} \mathrm{C}$
$-20 \ldots+70{ }^{\circ} \mathrm{C}$
< 85 \% (condensation inadmissible)
30 min
any
$<20 \Omega$ / wire
<6 VA
$<0.2 \mathrm{~kg}$

Protection grade ensured by the casing

- from the frontal plate
- from the terminal side
acc. to EN 60529

Additional errors in rated operating

 conditions caused by:- compensation of thermocouple cold junction temperature changes $\leq 2{ }^{\circ} \mathrm{C}$,
- ambient temperature change $\leq 100 \%$ value of basic error $/ 10 \mathrm{~K}$.

Safety requirements acc. to EN 61010-1

- installation category

III,

- pollution level 2,
- maximal phase-to-earth operating voltage:
- for supply circuits, outputs 300 V
- for input circuits 50 V
- altitude above sea
< 2000 m

Electromagnetic compatibility

- noise immunity
- noise emissions
acc. to EN 61000-6-2
acc. to EN 61000-6-4

18. ORDERING CODE

The way of coding is given in the table 20.
Table 20

1) - Only, when a relay or a $0 / 5 \mathrm{~V}$ voltage is also selected on the output 1 ,
2) - Only after agreeing by the manufacturer
3) - Only product label in Russian language

Ordering Example:

The code RE82-1 21100 E 0 means:
RE82 - controller of RE82 type
1 - output 1: relay
2 - output 2: voltage $0 / 5 \mathrm{~V}$
1 - transducer supply 24 V d.c./ 30 mA
1 - supply: 85 .. 253 V a.c./ d.c.
00 - standard version
E - English version of user's manual
0 - without extra quality requirements.

Sifam Tinsley Instrumentation Ltd Unit 1 Warner Drive, Springwood Industrial Estate Braintree, Essex, UK, CM72YW E-mail: sales@sifamtinsley.com Web: www.sifamtinsley.com/uk Contact: +44(0)1803615139

Sifam Tinsley Instrumentation Inc.
3105, Creekside Village Drive, Suite No. 801, Kennesaw, Georgia 30144 (USA)
E-mail Id: psk@sifamtinsley.com
Web: www.sifamtinsley.com
Contact No.: +1 4047364903

